Меню Рубрики

Биохимическая специализация скелетной мышцы

М. Аталай и О.О.П. Хяннинен Университет Куопио, Финляндия

Мышцы состоят из ткани, способной сокращаться. Выделяют три основных типа мышц -скелетная, сердечная и гладкая. В мышечных клетках всех трех типов большинство образуемой энергии используется для мышечного сокращения, которое осуществляется за счет скольжения молекул актина вдоль молекул миозина. Помимо этого, энергия используется для перемещения Са2+ из саркоплазмы в саркоплазматическую сеть после окончания мышечного сокращения. Энергия требуется и для переноса ионов натрия и калия через мембрану миоцита (мышечной клетки) для поддержания градиента концентрации.

Основное топливо в мышцах — это макроэргическое фосфатное соединение аденозинтрифосфат (АТФ). Однако запаса АТФ в мышцах хватило бы только на 1-2 с. Креатинфосфат (КФ), который также содержит макроэргическую связь, является быстрым источником энергии для регенерации АТФ. Запасы КФ также ограничены и предоставляемой энергии хватило бы всего на 5-8 с мышечных сокращений. Основной источник энергии для мышц — это глюкоза и жирные кислоты, потребление которых зависит от веса и физического состояния организма, а также от доступности кислорода. Образование АТФ при цитозольном гликолизе, митохондриальном бета-окислении жирных кислот и в цикле трикарбоновых кислот строго регулируется и коррелирует с потребностями мышц в большем количестве АТФ. Когда потребности в энергии превышают возможность скелетной мышцы предоставить АТФ посредством цикла трикарбоновых кислот в окислительных условиях, стимулируется гликолиз и вырабатывается молочная кислота, что приводит к образованию АТФ в анаэробных условиях — без кислорода.

Сердечная мышца может функционировать за счет разных источников энергии и мало зависит от обмена глюкозы. Гладкая мышца работает более эффективно и требует меньше АТФ, чем сердечная и скелетная мышцы.

Мышечная ткань — эта ткань организма, которая характеризуется способностью к сокращению, возникающему обычно в ответ на сигнал нервной системы. Среди трех типов мышц скелетная и сердечная потребляют наибольшее количество энергии. Сердце — это мышечный насос, за счет которого кровь циркулирует по руслу. Несмотря на то, что сердечная мышца мала по сравнению с другими типами мышечной ткани, она очень хорошо снабжается кровью и характеризуется активным энергетическим обменом.

Гладкие мышцы можно обнаружить в первую очередь в дыхательной, мочеполовой системах, желудочно-кишечном тракте и кровеносных сосудах. Многие жизненно важные функции контролируются за счет сокращения и тонуса гладкой мускулатуры в этих тканях и органах, например, поддержание кровотока и кровяного давления, регуляция воздушного потока в дыхательной системе, продвижение содержимого желудка и выведение мочи. Гладкие мышцы используют сравнительно небольшое количество энергии, несмотря на тяжелую работу, которую они выполняют. Масса опорно-двигательного аппарата, включая скелетные мышцы, составляет около двух третей от общей массы тела. В состоянии покоя на скелетные мышцы приходится одна шестая часть от минутного объема, что сопоставимо с долей мозга. В период наибольшей активности при аэробной работе мышцы потребляют наибольшее количество кислорода, и циркуляция крови в них составляет четыре пятых от минутного сердечного объема.

Энергетический обмен в скелетных мышцах уникален. Помимо аэробной работы они приспособлены к кратковременной анаэробной активности, что позволяет увеличить выносливость при физической активности более низкой интенсивности и дает возможность для кратковременной высокоактивной деятельности. Уровень потребления АТФ в скелетной мышце может сильно меняться, более чем в сто раз. Изменение количества потраченного АТФ приводит к компенсаторным изменениям в циркуляторной, сердечной и дыхательной функциях. В организме человека в состоянии покоя скелетная мышца получает примерно 5 мл крови на 100 г ткани. Во время тяжелых физических упражнений доля минутного сердечного объема мышечной ткани может возрастать у тренированного организма до четырех пятых или даже больше от общего минутного объема (рис. 1). Выделение кислорода также возрастает, в пользу чего свидетельствует повышение артериовенозной разности с 25% в состоянии покоя до 80% или даже больше при максимальной физической нагрузке. Таким образом, потребление кислорода в рабочей мышце может возрастать в сто раз; это на самом деле небольшое повышение в сравнении с некоторыми животными, у которых повышение может быть в тысячи раз.

Обмен в мышцах характеризуется следующими утверждениями о биохимическом энергетическом объеме:

  • химическая энергия накапливается в мышцах в виде АТФ и креатинфосфата;
  • АТФ предоставляет энергию для всех типов мышечной работы;
  • АТФазы — ферменты, которые расщепляют АТФ и высвобождают энергию для мышечной работы и обмена веществ, являются потребителем в данном процессе и определяют энергетическое состояние;
  • эта потребность удовлетворяется непрерывным аэробным обменом веществ.
  • Рабочая единица всех мышц — это миофибрилла, мелкая нитевидная структура, состоящая из белков. Каждая мышечная клетка (волокно) содержит несколько миофибрилл, которые состоят из строго упорядоченных толстых и тонких мышечных филаментов.

Сокращения в скелетных мышцах в норме связаны с деполяризацией плазматической мембраны, которая вызывает высвобождение ионов кальция из внутриклеточных запасов в саркоплазматическом ретикулуме. Ионы кальция связываются с тропонином С — регуляторным белком, связанным с тонкими филаментами, что приводит к изменению конформации белка. Это изменение формы передается другим компонентам филамента (тропонин Т, тропонин I, тропомиозин и актин), что позволяет субъединицам актина взаимодействовать с соседними молекулами миозина. Сокращение останавливается, когда ионы кальция поглощаются саркоплазматическим ретикулумом через АТФ-зависимый насос, известный как Са2+АТФаза.

Скелетные мышцы получают энергию в основном из глюкозы и жирных кислот. Она также хранится в значительном количестве в мышечных волокнах в виде гликогена и триглицеридов. Химическая энергия связей углеводов, жиров и белков высвобождается в виде АТФ -источника быстрой энергии. Аденозинфосфаты участвуют в циклах в качестве акцепторов и доноров энергии: запасы АТФ восполняются во время окисления источников энергии и используются при работе скелетных мышц. АТФ состоит из молекулы аденозина, связанной с тремя фосфатными группами. Связи молекулы с фосфатными группами называются ма-кроэргическими, поскольку при их гидролизе (взаимодействии с водой) высвобождается 7,3 ккал энергии. Эта реакция катализируется ферментом, который называется аденозинтри-фосфатаза (АТФаза), а конечным продуктом реакции является молекула аденозина, содержащая две фосфатные группы 1 аденозиндифосфат (АДФ). Дополнительную энергию можно получить при гидролизе второй фосфатной группы; конечный продукт i это аденозинмо-нофосфат (АМФ).

АТФ + Н20 — АТФаза— АДФ + Р + 7,3 ккал/моль

Запасов АТФ достаточно, чтобы обеспечить мышцы энергией на несколько секунд.

В скелетных мышцах человека всего хранится 80 г АТФ. Однако расход АТФ у наиболее выносливых спортсменов может достигать 75-80% от массы тела за счет постоянного восполнения содержания АТФ в мышцах. По мере расходования АТФ синтезируется посредством трех механизмов: быстрый из макроэргических фосфатов (креатинфосфат), средней продолжительности (анаэробный гликолиз) и длительный (окислительное фосфорилирование глюкозы и жирных кислот до воды и С02). Окисление жиров и углеводов — это основной источник повторного синтеза АТФ; это медленный и непрерывный процесс. Быстрое восполнение запасов АТФ поддерживается без кислорода за счет КФ — макроэргического фосфата. Энергия высвобождается при распаде КФ и идет на немедленный синтез АТФ. АТФ и КФ (фосфагенная система) являются важным и необходимым источником энергии для сокращения мышц, особенно при физических нагрузках, для которых необходимо большое количество энергии за малое время, например, при быстром старте спринтеров и прыгунов в высоту. Для длительного аэробного обмена веществ необходимо поддерживать стационарное равновесие между синтезом и распадом АТФ. Поэтому концентрации АТФ и КФ довольно постоянны (примерно 5 ммоль/л и 30 ммоль/л, соответственно). Во время фазы восстановления после мышечного сокращения КФ синтезируется повторно из продуктов его распада креатина и неорганического фосфата за счет АТФ. Энергия, необходимая для восполнения фосфагена, образуется при аэробном обмене веществ.

источник

Мышечная система и ее функции

сокращений, общий обзор скелетной мускулатуры)

Существует два вида мускулатуры: гладкая (непроизвольная) и поперечно-полосатая (произвольная). Гладкие мышцы расположены в стенках кровеносных сосудов и некоторых внутренних органах. Они сужают или расширяют сосуды, продвигают пищу по желудочно-кишечному тракту, сокращают стенки мочевого пузыря. Поперечно-полосатые мышцы – это все скелетные мышцы, которые обеспечивают многообразные движения тела. К поперечно-полосатым мышцам относится также и сердечная мышца, автоматически обеспечивающая ритмическую работу сердца на протяжении всей жизни. Основа мышц – белки, составляющие 80–85% мышечной ткани (исключая воду). Главное свойство мышечной ткани – сократимость, она обеспечивается благодаря сократительным мышечным белкам – актину и миозину.

Мышечная ткань устроена очень сложно. Мышца имеет волокнистую структуру, каждое волокно – это мышца в миниатюре, совокупность этих волокон и образуют мышцу в целом. Мышечное волокно, в свою очередь, состоит из миофибрилл. Каждая миофибрилла разделена на чередующиеся светлые и темные участки. Темные участки – протофибриллы состоят из длинных цепочек молекул миозина, светлые образованы более тонкими белковыми нитями актина. Когда мышца находится в несокращенном (расслабленном) состоянии, нити актина и миозина лишь частично продвинуты относительно друг друга, причем каждой нити миозина противостоят, окружая ее, несколько нитей актина. Более глубокое продвижение относительно друг друга обусловливает укорочение (сокращение) миофибрилл отдельных мышечных волокон и всей мышцы в целом (рис. 2.3).

К мышце подходят и от нее отходят (принцип рефлекторной дуги) многочисленные нервные волокна (рис. 2.4). Двигательные (эфферентные) нервные волокна передают импульсы от головного и спинного мозга, приводящие мышцы в рабочее состояние; чувствительные волокна передают импульсы в обратном направлении, информируя центральную нервную, систему о деятельности мышц. Через симпатические нервные волокна осуществляется регуляция обменных процессов в мышцах, посредством чего их деятельность приспосабливается к изменившимся условиям работы, к различным мышечным нагрузкам. Каждую мышцу пронизывает разветвленная сеть капилляров, по которым поступают необходимые дли жизнедеятельности мышц вещества и выводятся продукты обмена.

Скелетная мускулатура. Скелетные мышцы входят в структуру опорно-двигательного аппарата, крепятся к костям скелета и при сокращении приводят в движение отдельные звенья скелета, рычаги. Они участвуют в удержании положения тела и его частей в пространстве, обеспечивают движения при ходьбе, беге, жевании, глотании, дыхании и т.д., вырабатывая при этом тепло. Скелетные мышцы обладают способностью возбуждаться под влиянием нервных импульсов. Возбуждение проводится до сократительных структур (миофибрилл), которые, сокращаясь, выполняют определенный двигательный акт – движение или напряжение.

Рис. 2.3. Схематическое изображение мышцы.

Мышца (Л) состоит из мышечных волокон (Б), каждое из них — из миофибрилл (В). Миофибрилла (Г) составлена из толстых и тонких миофиламентов (Д). На рисунке показан один саркомер, ограниченный с двух сторон линиями: 1 — изотропный диск, 2 — анизотропный диск, 3 — участок с меньшей анизотропностью. Поперечный сред мнофибриллы (4), дающий представление о гексагональиом распределении толстых и тонких мнофиламснтов

Рис. 2.4. Схема простейшей рефлекторной дуги:

1 — аффрерентный (чувствительный) нейрон, 2 — спинномозговой узел, 3 — вставочный нейрон, 4 .- серое вещество спинного мозга, 5 — эфферентный (двигательный) нейрон, 6 — двигательное нервное окончание в мышцах; 7 — чувствительное нервное окончание в коже

Напомним, что вся скелетная мускулатура состоит из поперечно-полосатых мышц. У человека их насчитывается около 600 и большинство из них — парные. Их масса составляет 35—40% общей массы тела взрослого человека. Скелетные мышцы снаружи покрыты плотной со-единительнотканной оболочкой. В каждой мышце различают активную часть (тело мышцы) и пассивную (сухожилие). Мышцы делятся на длинные, короткие и широкие.

Мышцы, действие которых направлено противоположно, называются антагонистами, однонаправленно — синергистами. Одни и те же мышцы в различных ситуациях могут выступать в том и другом качестве. У человека чаще встречаются веретенообразные и лентовидные. Веретенообразные мышцы расположены и функционируют в районе длинных костных образований конечностей, могут иметь два брюшка (двубрюшные мышцы) и несколько головок (двуглавые, трехглавые, четырехглавые мышцы). Лентовидные мышцы имеют различную ширину и обычно участвуют в корсетном образовании стенок туловища. Мышцы с перистым строением, обладая большим физиологическим поперечником за счет большого количества коротких мышечных структур, значительно сильнее тех мышц, ход волокон в которых имеет прямолинейное (продольное) расположение. Первые называют сильными мышцами, осуществляющими малоамплитудные движения, вторые — ловкими, участвующими в движениях с большой амплитудой. По функциональному назначению и направлению движений в суставах различают мышцы сгибатели и разгибатели, приводящие и отводящие, сфинктеры (сжимающие) и расширители.

Читайте также:  Трицепс упражнения на каждую мышцу

Сила мышцы определяется весом груза, который она может поднять на определенную высоту (или способна удерживать при максимальном возбуждении), не изменяя своей длины. Сила мышцы зависит от суммы сил мышечных волокон, их сократительной способности; от количества мышечных волокон в мышце и количества функциональных единиц, одновременно возбуждающихся при развитии напряжения; от исходной длины мышцы (предварительно растянутая мышца развивает большую силу); от условий взаимодействия с костями скелета.

Сократительная способность мышцы характеризуется ее абсолютной силой, т.е. силой, приходящейся на 1 см 2 поперечного сечения мышечных волокон. Для расчета этого показателя силу мышцы делят на площадь ее физиологического поперечника (т.е. на сумму площадей всех мышечных волокон, составляющих мышцу). Например: в среднем у человека сила (на 1 см 2 попереченого сечения мышцы) икроножной мышцы. — 6,24; разгибателей шеи — 9,0; трехглавой мышцы плеча — 16,8кг.

Центральная нервная система регулирует силу сокращения мышцы путем изменения количества одновременно участвующих в сокращении функциональных единиц, а также частотой посылаемых к ним импульсов. Учащение импульсов ведет к возрастанию величины напряжения.

Работа мышц. В процессе мышечного сокращения потенциальная химическая энергия переходит в потенциальную механическую энергию напряжения и кинетическую энергию движения. Различают внутреннюю и внешнюю работу. Внутренняя работа связана с трением в мышечном волокне при его сокращении. Внешняя работа проявляется при перемещении собственного тела, груза, отдельных частей организма (динамическая работа) в пространстве. Она характеризуется коэффициентом полезного действия (КПД) мышечной системы, т.е. отношением производимой работы к общим энергетическим затратам (для мышц человека кпд составляет 15—20%, у физически развитых тренированных людей этот показатель несколько выше).

При статических усилиях (без перемещения) можно говорить не о работе как таковой с точки зрения физики, а о работе, которую следует оценивать энергетическими физиологическими затратами организма.

Мышца как орган. В целом мышца как орган представляет собой сложное структурное образование, которое выполняет определенные функции, состоит на 72—80% из воды и на 16—20% из плотного вещества. Мышечные волокна состоят из миофибрилл с клеточными ядрами, рибосомами, митохондриями, саркоплазматическим ретикулюмом, чувствительными нервными образованиями — проприорецепторами и другими функциональными элементами, обеспечивающими синтез белков, окислительное фосфорилирование и ресинтез аденозинтрифосфорной кислоты, транспортировку веществ внутри мышечной клетки и т.д. в процессе функционирования мышечных волокон. Важным структурно-функциональным образованием мышцы является двигательная, или нейромоторная, единица, состоящая из одного мотонейрона и иннервируемых им мышечных волокон. Различают малые, средние и большие двигательные единицы в зависимости от количества мышечных волокон, задействованных в акте сокращения.

Система соединительнотканных прослоек и оболочек связывает мышечные волокна в единую рабочую систему, обеспечивающую с помощью сухожилий передачу возникающей при мышечном сокращении тяги на кости скелета.

Вся мышца пронизана разветвленной сетью кровеносных и веточками лимфатических сосунов. Красные мышечные волокна обладают более густой сетью кровеносных сосудов, чем белые. Они имеют большой запас гликогена и липидов, характеризуются значительной тонической активностью, способностью к длительному напряжению и выполнению продолжительной динамической работы. Каждое красное волокно имеет больше, чем белое, митохондрий — генераторов и поставщиков энергии, окруженных 3—5 капиллярами, и это создает условия для более интенсивного кровоснабжения красных волокон и высокого уровня обменных процессов.

Белые мышечные волокна имеют миофибриллы, которые толще и сильнее миофибрилл красных волокон, они быстро сокращаются, но не способны к длительному напряжению. Митохондрий белого вещества имеют только один капилляр. В большинстве мышц содержатся красные и белые волокна в разных пропорциях. Различают также мышечные волокна тонические (способные к локальному возбуждению без его распространения); фазные, .способные реагировать на распространяющуюся волну возбуждения как сокращением, так и расслаблением; переходные, сочетающие оба свойства.

Мышечный насос — физиологическое понятие, связанное с мышечной функцией и ее влиянием на собственное кровоснабжение. Принципиальное его действие проявляется следующим образом: во время сокращения скелетных мышц приток артериальной крови к ним замедляется и ускоряется отток ее по венам; в период расслабления венозный отток уменьшается, а артериальный приток достигает своего максимума. Обмен веществ между кровью и тканевой жидкостью происходит через стенку капилляра.

Рис. 2.5. Схематическое изображение процессов, происходящих в

1 — синаптические пузырьки, 2 — пресинаптическая мембрана, 3 — медиатор, 4 — пост-синаптическая мембрана, 5 — синаптическая щель

Механизмы мышечного Функции мышц регулируются различными сокращения отделами центральной нервной системы (ЦНС), которые во многом определяют характер их разносторонней активности

(фазы движения, тонического напряжения и др.). Рецепторы Двигательного аппарата дают начало афферентным волокнам двигательного анализатора, которые составляют 30—50% волокон смешанных (афферентно-эфферентных) нервов, направляющихся в спинной мозг. Сокращение мышц Вызывает импульсы, которые являются источником мышечного чувства — кинестезии.

Передача возбуждения с нервного волокна на мышечное осуществляется через нервно-мышечный синапс (рис. 2.5), который состоит из двух разделенных щелью мембран — пресинаптической (нервного происхождения) и постсинаптической (мышечного происхождения). При воздействии нервного импульса выделяются кванты ацетилхолина, который приводит к возникновению электрического потенциала, способного возбудить мышечное волокно. Скорость проведения нервного импульса через синапс в тысячи раз меньше, чем в нервном волокне. Он проводит возбуждение только в направлении к мышце. В норме через нервно-мышечный синапс млекопитающих может пройти до 150 импульсов в одну секунду. При утомлении (или патологии) подвижность нервно-мышечных окончаний снижается, а характер импульсов может изменяться.

Химизм и энергетика мышечного сокращения. Сокращение и напряжение мышцы осуществляется за счет энергии, освобождающейся при химических превращениях, которые происходят при поступлении в

мышцу нервного импульса или нанесении на нее непосредственного раздражения. Химические превращения в мышце протекают как при наличии кислорода (в аэробных условиях), так и при его отсутствии (в анаэробных условиях).

Расщепление и ресинтез аденозинтрифосфорной кислоты (АТФ). Первичным источником энергии для сокращения мышцы служит расщепление АТФ (она находится в клеточной мембране, ретикулюме и миозиновых нитях) на аденозиндифосфорную кислоту (АДФ) и фосфорные кислоты. При этом из каждой грамм-молекулы АТФ освобождается 10 000 кал:

АТФ = АДФ + НзР04 + 10 000 кал.

АДФ в ходе дальнейших превращений дефосфолирируется до аде-ниловой кислоты. Распад АТФ стимулирует белковый фермент актомиозин (аденозинтрифосфотаза). В покое он не активен, активизируется при возбуждении мышечного волокна. В свою очередь АТФ воздействует на нити миозина, увеличивая их растяжимость. Активность актомиозина увеличивается под воздействием ионов Са, которые в состоянии покоя располагаются в саркоплазматическом ретикулюме.

Запасы АТФ в мышце незначительны и, чтобы поддерживать их деятельность, необходим непрерывный ресинтез АТФ. Он происходит за счет энергии, получаемой при распаде креатинфосфата (КрФ) на креатин (Кр) и фосфорную кислоту (анаэробная фаза). С помощью ферментов фосфатная группа от КрФ быстро переносится на АДФ (в течение тысячных долей секунды). При этом на каждый моль КрФ освобождается 46 кДж:

Таким образом, конечный процесс, обеспечивающий все энергетические расходы мышцы, — процесс окисления. Между тем длительная деятельность мышцы возможна лишь При достаточном поступлении к ней кислорода, так как содержание веществ, способных отдавать энергию, в анаэробных условиях постепенно падает. Кроме того, при этом накапливается молочная кислота, сдвиг реакции в кислую сторону нарушает ферментативные реакции и может привести к угнетению и дезорганизации обмена веществ и снижению работоспособности мышц. Подобные условия возникают в организме человека при работе максимальной, субмаксимальной и большой интенсивности (мощности), например при беге на короткие и средние дистанции. Из-за развившейся гипоксии (нехватки кислорода) не полностью восстанавливается АТФ, возникает так называемый кислородный долг и накапливается молочная кислота.

Аэробный ресинтез АТФ (синонимы: окислительное фосфолири-рование, тканевое дыхание) — в 20 раз эффективнее анаэробного энергообразования. Накопленная во время анаэробной деятельности и в процессе длительной работы часть молочной кислоты окисляется до углекислоты и воды (1/4—1/6 ее часть), образующаяся энергия используется на восстановление оставшихся частей молочной кислоты в глюкозу и гликоген, при этом обеспечивается ресинтез АТФ и КрФ. Энергия окислительных процессов используется также и для ресинтеза углеводов, необходимых мышце для ее непосредственной деятельности.

В целом углеводы дают наибольшее количество энергии для мышечной работы. Например, при аэробном окислении глюкозы образуются 38 молекул АТФ (для сравнения: при анаэробном распаде углевода образуется лишь 2 молекулы АТФ).

Время развертывания аэробного пути образования АТФ составляет 3—4 мин (у тренированных — до 1 мин), максимальная мощность при этом 350—450 кал/мин/кг, время поддержания максимальной мощности — десятки минут. Если в покое скорость аэробного ресинтеза АТФ невысокая, то при физических нагрузках его мощность становится максимальной и при этом аэробный путь может работать часами. Он отличается также высокой экономичностью: в ходе этого процесса идет глубокий распад исходных веществ до конечных продуктов СОг и НаО. Кроме того, аэробный путь ресинтеза АТФ отличается универсальностью в использовании субстратов: окисляются все органические вещества организма (аминокислоты, белки, углеводы, жирные кислоты, кетоновые тела и др.).

Однако аэробный способ ресинтеза АТФ имеет и недостатки: 1) он требует потребления кислорода, доставка которого в мышечную ткань обеспечивается дыхательной и сердечно-сосудистой системами, что, естественно, связано с их напряжением; 2) любые факторы, влияющие на состояние и свойство мембран митохондрий, нарушают образование АТФ; 3) развертывание аэробного образования АТФ продолжительно во времени и невелико по мощности.

Мышечная деятельность, осуществляемая в большинстве видов спорта, не может полностью быть обеспечена аэробным процессом ре-синтеза АТФ, и организм вынужден дополнительно включать анаэробные способы образования АТФ, имеющие более короткое время развертывания и большую максимальную мощность процесса (т.е. наибольшее количество АТФ,’ образуемое в единицу времени) — 1 моль АТФ соответствует 7,3 кал, или 40 Дж (1 кал == 4,19 Дж).

Возвращаясь к анаэробным процессам энергообразования, следует уточнить, что они протекают по меньшей мере в виде двух типов реакций: 1. Креатинфосфокиназная — когда осуществляется расщепление КрФ, фосфорные группировки с которого переносятся на АДФ, ресинтезируя при этом АТФ. Но запасы креатинфосфата в мышцах невелики и это обусловливает быстрое (в течение 2—4 с) угасание этого типа реакции. 2. Гликолитическая (гликолиз) — развивается медленнее, в течение 2—3 мин интенсивной работы. Гликолиз начинается с фосфолирирования запасов гликогена мышц и поступающей с кровью глюкозы. Энергии этого процесса хватает на несколько минут напряженной работы. На этом этапе завершается первая стадия фосфолирирования гликогена и происходит подготовка к окислительному процессу. Затем наступает вторая стадия гликолитической реакции — дегидрогенирование и третья — восстановление АДФ в АТФ. Гликолитическая реакция заканчивается образованием двух молекул молочной кислоты, после чего разворачиваются дыхательные процессы (к 3—5 мин работы), когда начинает окисляться молочная кислота (лак-тат), образованная в процессе анаэробных реакций.

Биохимическими показателями оценки креатинфосфатного анаэробного пути ресинтеза АТФ является креатининовый коэффициент и алактатный (без молочной кислоты) кислородный долг. Креатининовый коэффициент — это выделение креатинина с мочой за сутки в расчете на 1 кг массы тела. У мужчин выделение креатинина колеблется в пределах 18—32 мг/сут х кг, а у женщин — 10—25 мг/сут х кг. Между содержанием креатинфосфата и образованием у него креатинина существует прямолинейная зависимость. Следовательно, с помощью креатининового коэффициента можно оценить потенциальные возможности этого пути ресинтеза АТФ.

Читайте также:  Трихинеллы в тканях мышц

Биохимические сдвиги в организме, обусловленные накоплением молочной кислоты в результате гликолиза. Если в покое до начала мы шечной деятельности концентрация лактата в крови составляет 1— 2 ммоль/л, то после интенсивных, непродолжительных нагрузок в течение 2—3 мин эта величина может достигать 18—20 ммоль/л. Другим показателем, отражающим накопление в крови молочной кислоты, служит показатель крови (рН): в покое 7,36, после нагрузки снижение до 7,0 и более. Накопление лактата в крови определяет и ее щелочной резерв — щелочные компоненты всех буферных систем крови.

Окончание интенсивной мышечной деятельности сопровождается снижением потребления кислорода — вначале резко, затем более плавно. В связи с этим выделяют два компонента кислородного долга: быстрый (алактатный) и медленный (лактатный). Лактатный — это то количество кислорода, которое используется после окончания работы для устранения молочной кислоты: меньшая часть окисляется до J-bO и СОа, большая часть превращается в гликоген. На это превращение тратится значительное количество АТФ, которая образуется аэробным путем за счет кислорода, составляющего лактатный долг. Метаболизм лактата осуществляется в клетках печени и миокарда.

Количество кислорода, необходимое для полного обеспечения выполняемой работы, называют кислородным запросом. Например, в беге на 400 м кислородный запрос, равен приблизительно 27 л. Время про-бегания дистанции на уровне мирового рекорда составляет около 40 с. Исследования показали, что за это время спортсмен поглощает 3—4 л 02. Следовательно, 24 л — это общий кислородный долг (около 90% кислородного запроса), который ликвидируется после забега.

В беге на 100 м кислородный долг может доходить до 96% запроса. В беге на 800 м доля анаэробных реакций несколько снижается — до 77%, в беге на 10 000 м — до 10%, т.е. преобладающая часть энергии поставляется за счет дыхательных (аэробных) реакций.

Механизм мышечного расслабления. Как только в мышечное волокно перестают поступать нервные импульсы, ионы Са^ под действием так называемого кальциевого насоса за счет энергии АТФ уходят в цистерны саркоплазматического ретикулюма и их концентрация в саркоплазме понижается до исходного уровня. Это вызывает изменения конформации тропонина, который, фиксируя тропомиозин в определенном участке актиновых нитей, делает невозможным образование поперечных мостиков между толстыми и тонкими нитями. За счет упругих сил, возникающих при мышечном сокращении в коллагеновых нитях, окружающих мышечное волокно, оно при расслаблении возвращается в исходное состояние. Таким образом, процесс мышечного расслабления, или релаксации, так же, как и процесс мышечного сокращения, осуществляется с использованием энергии гидролиза АТФ.

В ходе мышечной деятельности в мышцах поочередно происходят процессы сокращения и расслабления и, следовательно, скоростно-силовые качества мышц в равной мере зависят от скорости мышечного сокращения и от способности мышц к релаксации.

Краткая характеристика гладких мышечных волокон. В гладких мышечных волокнах отсутствуют миофибриллы. Тонкие нити (актиновые) соединены с сарколеммой, толстые (миозиновые) находятся внутри мышечных клеток. В гладких мышечных волокнах отсутствуют также цистерны с ионами Са. Под действием нервного импульса ионы Са медленно поступают в саркоплазму из внеклеточной жидкости и также медленно уходят после того, как прекращают поступать нервные импульсы. Поэтому гладкие мышечные волокна медленно сокращаются и медленно расслабляются.

Общий обзор скелетных мышц человека. Мышцы туловища (рис. 2.6 и 2.7) включают мышцы грудной клетки, спины и живота. Мышцы грудной клетки участвуют в движениях верхних конечностей, а также обеспечивают произвольные и непроизвольные дыхательные движения. Дыхательные мышцы грудной клетки называются наружными и внутренними межреберными мышцами. К дыхательным мышцам относится также и диафрагма. Мышцы спины состоят из поверхностных и глубоких мышц. Поверхностные обеспечивают некоторые движения верхних конечностей, головы и шеи. Глубокие («выпрямители туловища») прикрепляются к остистым отросткам позвонков и тянутся вдоль позвоночника. Мышцы спины участвуют в поддержании вертикального положения тела, при сильном напряжении (сокращении) вызывают прогибание туловища назад. Брюшные мышцы поддерживают давление внутри брюшной полости (брюшной пресс), участвуют в некоторых движениях тела (сгибание туловища вперед, наклоны и повороты в стороны), в процессе дыхания.

Мышцы головы и шеи — мимические, жевательные и приводящие в движение голову и шею. Мимические мышцы прикрепляются одним своим концом к кости, другим — к коже лица, некоторые могут начинаться и оканчиваться в коже. Мимические мышцы обеспечивают движения кожи лица, отражают различные психические состояния человека, сопутствуют речи и имеют значение в общении. Жевательные мышцы при сокращении вызывают движение нижней челюсти вперед и в стороны. Мышцы шеи участвуют в движениях головы. Задняя группа мышц, в том числе и мышцы затылка, при тоническом (от слова «тонус») сокращении удерживает голову в вертикальном положении.

Рис. 2.6. Мышцы передней половины тела (по Сыльвановичу):

1 — височная мышца, 2 — жевательная мышца, 3 — грудино-ключично-сосцевидная мышца, 4 — большая грудная мышца, 5 — средняя лестничная мышца, б — наружная косая мышца живота, 7 — медиальная широкая мышца бедра, 8 — латеральная широкая мышца бедра, 9 — прямая мышца бедра, 10 — портняжная мышца, 11 — нежная мышца, 12 — внутренняя косая мышца живота, 13 — прямая мышца живота, 14 — двуглавая Мышца плеча, 15

наружные межреберные мышцы, 16 — круговая мышца рта, 17 — круговая мышца глаза, 18 — лобная мышца

Мышцы верхних конечностей обеспечивают движения плечевого пояса, плеча, предплечья и приводят в движение кисть и пальцы. Главными мышцами-антагонистами являются двуглавая (сгибатель) и трехглавая (разгибатель) мышцы плеча. Движения верхней конечности и прежде всего кисти чрезвычайно многообразны. Это связано с тем, что рука служит человеку органом труда.

Рис. 2.7. Мышцы задней половины тела (по Сыльвановичу):

1 — ромбовидная мышца, 2 — выпрямитель туловища, 3 — глубокие мышцы ягодичной мышцы, 4 — двуглавая мышца бедра, 5 — икроножная мышца, 6 — ахиллово сухожилие, 7 — большая ягодичная мышца, 8 — широчайшая мышца скипы, 9 — дельтовидная мышца, 10 — трапециевидная мышца

Мышцы нижних конечностей обеспечивают движения бедра, голени и стопы. Мышцы бедра играют важную роль в поддержании вертикального положения тела, но у человека они развиты сильнее, чем у других позвоночных. Мышцы, осуществляющие движения голени, расположены на бедре (например, четырехглавая мышца, функцией которой является разгибание голени в коленном суставе; антагонист этой мышцы — двуглавая мышца бедра). Стопа и пальцы ног приводятся в движение мышцами, расположенными на голени и стопе. Сгибание пальцев стопы осуществляется при сокращении мышц, расположенных на подошве, а разгибание — мышцами передней поверхности голени и стопы. Многие мышцы бедра, голени и стопы принимают участие в поддержании тела человека в вертикальном положении.

Не нашли то, что искали? Воспользуйтесь поиском:

источник

Название Лекция 12 12. Биохимия мышечной ткани
Анкор Lektsia_12_Myshtsy.doc
Дата 06.09.2018
Размер 0.74 Mb.
Формат файла
Имя файла Lektsia_12_Myshtsy.doc
Тип Лекция
#24155
Подборка по базе: экзамен биохимия.docx, глоссарий биохимия.docx, 02 — Лекция 1. Проектная деятельность.pdf, электротехника лекция метод.docx, 1. ЛЕКЦИЯ ЭЛЕКТРИК.doc, Ерланкызы 10 биохимия.docx, Долганова Обзорная лекция.pdf, Альтернативная биохимия.docx, 1 Лекция модуль.docx, Демпинг, лекция, медиаторы.docx.

Мышечная ткань составляет 40% от веса тела человека. Биохимические процессы, протекающие в мышцах, оказывают большое влияние на весь организм человека.
12.1. Функции и виды мышечной ткани

Важнейшей особенностюь функционирования мышц является то, что в процессе мышечного сокращения происходит преобразование химической энергии АТФ непосредственно в механическую энергию сокращения и движения.

У животных и человека имеется два основных типа мышц: поперечно-полосатые и гладкие.

Поперечно-полосатые мышцы прикрепляются к костям, т.е. к скелету, и поэтому ещё называются скелетными.

Поперечно-полосатые мышечные волокна также составляют основу сердечной мышцы – миокарда, хотя имеются определённые различия в строении миокарда и скелетных мышц.

Гладкие мышцы образуют мускулатуру стенок кровеносных сосудов, кишечника, пронизывают ткани внутренних органов и кожу.
12.2. Морфологическая структура поперечно-полосатых мышц

Каждая поперечно-полосатая мышца состоит из нескольких тысяч волокон, объединенных прослойками из соединительной ткани и такой же оболочкой – фасцией.

Мышечные волокна (миоциты) представляют собой сильно вытянутые многоядерные клетки крупного размера: длина их достигает от 0,1 до 2-3 см, а в некоторых мышцах – более 10 см. Толщина мышечных клеток 0,1-0,2 мм (рис. 12.1):

Рис. 12.1. Структура поперечно-полосатой мышцы и мышечного волокна
Как и любая клетка, миоцит содержит такие обязательные органеллы, как ядра, митохондрии, цитоплазматическую сеть (саркоплазматическая сеть), клеточную оболочку (плазмолемму) мышечной клетки – сарколемму.

Строение саркоплазматической сети

Необходимо отметить, что саркоплазматическая сеть состоит из трубочек, канальцев и пузырьков, образованных мембранами и соединённых друг с другом. Саркоплазматическая сеть с помощью особых трубочек, называемых Т-системой, связана с оболочкой мышечной клетки – сарколеммой.
12.2.1. Особенности структуры и состава миоцитов

1. Основной особенностью миоцитов, отличающих их от других клеток, является наличие сократительных элементов – миофибрилл. Миофибриллы занимают большую часть мышечных клеток, их диаметр около 1 мм.

2. Наличие в саркоплазме белка миоглобина, который по строению идентичен субъединице гемоглобина. Функция миоглобина заключается в связывании кислорода. Благодаря этому белку в мышцах создаётся определённый запас кислорода.

3. Основной углевод мышечной ткани – гликоген. Концентрация гликогена колеблется в приделах от 0,2 до 3%.

4. Каждое мышечное волокно окружено клеточной оболочкой – сарколеммой. К сарколемме подходят окончания двигательных нервов. Место контакта двигательных нервов с сарколеммой называется
нервно-мышечным синапсом.
12.2.1. Молекулярная структура поперечно-полосатых мышц

Микроскопическое изучение строения миофибрилл показало, что они состоят из чередующихся светлых и тёмных участков, или дисков , что создаёт под микроскопом видимую исчерченность всего мышечного волокна (рис. 12.2 ) :

Рис.12.2. Структура саркомера

При изучении структуры миофибрилл с помощью электронного микроскопа было установлено, что миофибриллы являются сложными структурами, простроенными, в свою очередь, из большого числа мышечных нитей двух типов – толстых и тонких .

Миофибриллы состоят из чередующихся пучков параллельно расположенных толстых и тонких нитей, которые концами заходят друг в друга ( рис. 12.2 ) .

У часток миофибриллы, состоящий из толстых нитей и находящихся между ними концов тонких нитей, обладают двойным лучепреломлением . При микроскопии этот участок задерживает видимый свет и поэтому кажется тёмным . Такие участки получили название анизотропные или тёмные диски ( А-диски ).

Светлые участки миофибрилл состоят из центральных частей тонких нитей. Они сравнительно легко пропускают лучи света и называются изотропными или светлыми дисками ( I-диски ).

В середине пучка тонких нитей поперечно располагается тонкая пластинка из белка , которая фиксирует положение мышечных нитей в пространстве. Эта пластинка хорошо видна под микроскопом в виде линии, идущей поперёк I-диска, и называется Z-линией .

. Участок миофибриллы между соседними Z-линиями называется саркомер.

Длина саркомера достигает 2,5-3 мм . Каждая миофибрилла состоит из нескольких тысяч саркомеров (до 1000).

Саркомер можно рассматривать в качестве функциональной единицы миофибриллы.

12.2.2. Структура толстых и тонких нитей миофибрилл

Толстая нить. Состоит из молекул белка миозина. Миозин — крупный олигомерный белок, молекулярная масса которого достигает 500 кДа, состоит из 6 субъединиц, попарно одинаковых: пара тяжёлых цепей и 2 пары лёгких цепей (рис. 12.3):

Рис. 12.3. Структура миозина

Тяжелая цепь: на С-конце — α-спираль, на N-конце — глобула. При соединении двух тяжелых цепей С-концевыми участками образуется суперспираль. Две легкие цепи входят в состав глобулы (головки). Стержневой участок суперспирали имеет 2 отдела, где спирали оголены — эти места открыты для действия протеолитических ферментов и имеют повышенную подвижность.

В физиологических условиях (оптимальные pH, температура, концентрации солей) молекулы миозина спонтанно взаимодействуют между собой своими стержневыми участками («конец в конец», «бок в бок») с помощью слабых нековалентных, а их головки выступают из толстой нити по правильной спирали (рис. 12.4):

Рис. 12.4. Структура толстых нитей миофибрилл

В головках миозина имеется два важных центра:

— первый катализирует гидролитическое расщепление АТФ, т.е. соответствует активному центру фермента;

— второй участок головки миозина обеспечивает во время мышечного сокращения связь толстых нитей с белком тонких нитей – актином.

Тонкие нити. В состав тонких нитей входят три белка: сократительный белок актин и регуляторные белки тропомиозин и тропонин.

Актин — небольшой глобулярный белок, его молекулярная масса — 42 кDа. G-актин представляет собой глобулу. В физиологических условиях его молекулы способны к спонтанной агрегации, образуя F-актин (Рис. 12.5):

Рис. 12.5. Структура белков тонких нитей: актина, тропомиозина и тропонина

Основой тонкой нити является двойная спираль, состоящая из двух цепей F-актина (фибриллярного актина), содержащих около 300 молекул
G-актина (глобулярного актина), как бы две нити бус, закрученных в двойную спираль.

Регуляторный белок тонких нитей — тропомиозин – также имеет форму двойной спирали. Однако эта спираль образована полипептидными цепями и по длине соответствует 7 звеньям двойной спирали актина. Тромиозин располагается в желобке двойной спирали актина.

Регуляторный белок тропонин присоединяется к тропомиозину и фиксирует его положение в желобке актина, при котором блокируется взаимодействие миозиновых головок с молекулами глобулярного актина тонких нитей.

Тропомиозин. Фибриллярный белок, молекулярная масса — 70 кДа. Имеет вид α-спирали. В тонкой нити на одну молекулу тропомиозина приходится 7 молекул G-актина. Располагается тропомиозин в желобке между двумя спиралями G-актина. Соединяется тропомиозин «конец в конец», цепочка непрерывная. Молекула тропомиозина закрывает активные центры связывания актина на поверхности глобул актина.

Тропонин. Глобулярный белок, молекулярная масса 80 кДа, имеет 3 субъединицы: тропонин «Т», тропонин «С» и тропонин «I». Располагается на тропомиозине с равными промежутками, длина которых равна длине молекулы тропомиозина.

Тропонин Т (ТнТ) — отвечает за связывание тропонина с тропомиозином, через тропонин «Т» конформационные изменения тропонина передаются на тропомиозин.

Тропонин С (ТнС) — Ca 2+ -связывающая субъединица, содержит 4 участка для связывания кальция, по строению похожа на белок кальмодулин.

Тропонин I (ТнI) — ингибиторная субъединица — это ненастоящий ингибитор — он только лишь создает пространственное препятствие, мешающее взаимодействию актина и миозина в момент, когда тропонин «С» не связан с Са 2+ .

12.3. Механизм мышечного сокращения

Мышечное сокращение является сложным процессом, в ходе которого происходит преобразование энергии химических связей АТФ в механическую работу, совершаемую мышцей.

В настоящее время этот механизм ещё полностью не изучен. Однако достоверно известно следующее:

1. Источником энергии, необходимой для сокращения мышц, является АТФ.

2. Гидролиз АТФ, сопровождающийся выделением энергии, катализируется глобулярной головкой миозина, которая обладает ферментативной активностью.

3. Пусковым механизмом мышечного сокращения является повышение концентрации ионов Ca 2+ в саркоплазме миоцитов, вызываемое двигательным нервным импульсом.

4. Во время сокращения между толстыми и тонкими нитями миофибрилл возникают поперечные мостики или спайки.

5. Во время мышечных сокращений происходит скольжение тонких нитей вдоль толстых, что приводит к укорочению миофибрилл и всего мышечного волокна в целом.

Существует много гипотез, пытающихся объяснить механизм мышечного сокращения. Наибольшее распространение получила гипотеза «вёсельной лодки» Х. Хаксли.

В мышце, находящейся в состоянии покоя, толстые и тонкие нити фибрилл друг с другом не соединены , так как участки связывания на молекулах актина закрыты молекулами тропомиозина.
Сокращение. Мышечное сокращение начинается под воздействием двигательного нервного импульса, который передаётся от отростков нервных клеток (аксонов) на мембрану миоцитов через нервно-мышечный синапс, что приводит к резкому повышению проницаемости мембраны для ионов кальция.

1. Са 2+ поступает в саркоплазму (цитоплазму) мышечной клетки из депо – цистерн саркоплазматической сети . Концентрация Са 2+ в саркоплазме мгновенно увеличивается в 100 раз (с 10 -7 М до 10 -5 М).

2. Ионы кальция связываются с тропонином и меняют его конформацию. В результате конформационных изменений тропонина молекулы тропомиозина смещаются вдоль желобка актина и освобождают тот участок актиновых молекул, который предназначен для связывания с миозиновыми головками (рис. 12.6):

Рис. 12.6. Молекулярный механизм мышечного сокращения

3. В результате этого между актином и миозином возникает поперечный мостик, расположенный под углом 90º. Поскольку в толстые и тонкие нити входит большое количество молекул миозина и актина (около 300 в каждую), то между мышечными нитями образуется большое количество спаек.

4. Образование мостика между актином и миозином сопровождается проявлением ферментативной активности головок миозина, которая заключается в расщеплении молекулы АТФ:

5. За счёт энергии, выделившейся при расщеплении АТФ, происходят конформационные изменения в головке в результате чего она, подобно шарниру, поворачивается и мостик между толстыми и тонкими нитями оказывается под углом 45º, что приводит к скольжению мышечных нитей навстречу друг другу (Рис. 12.7):

Рис. 12.7. Стадии взаимодействия миозина с актином

6. Совершив поворот, мостики между тонкими и толстыми нитями разрываются. АТФазная активность вследствие этого резко снижается и гидролиз АТФ прекращается.

7. Однако, если двигательный импульс продолжает поступать в мышцу и в саркоплазме сохраняется высокая концентрация ионов кальция, поперечные мостики образуются вновь, АТФазная активность миозина возрастает и снова происходит гидролиз АТФ, дающий энергию для поворота поперечных мостиков и т. д. Это ведёт к дальнейшему движению толстых и тонких нитей навстречу друг другу и, как результат, корочению миофибрилл и мышечного волокна.

Расслабление. Чтобы произошло расслабление мышцы, необходимы следующие условия:

— освобождение тропонина от Са 2+ — для этого работает мембрано-связанный фермент Са 2+ -зависимая АТФаза. Этот фермент использует энергию гидролиза АТФ для переноса Са 2+ обратно в цистерны против градиента их концентраций.

Запасы АТФ в клетке значительны, но их хватает для обеспечения мышечной работы только в течение 0, секунды. Однако в мышечной клетке идет очень быстрый ресинтез АТФ.

Особенность мышечной ткани — очень быстрые изменения концентрации АТФ (в 100 и более раз).

Источники энергии следующие.

  1. Специальные реакции субстратного фосфорилирования.
  2. Гликолиз, гликогенолиз.
  3. Окислительное фосфорилирование.

1. Специальные реакции субстратного фосфорилирования.

Участие специальных реакций субстратного фосфорилирования в обеспечении энергией мышечной клетки различна — это зависит от интенсивности, продолжительности, мощности и длительности мышечной работы.

1.1. Креатинфосфокиназная реакция.

Это самый быстрый способ ресинтеза АТФ. Запасов креатинфосфата хватает для обеспечения мышечной работы в течение 20 с.

Максимально эффективен. Не требует присутствия кислорода, не дает побочных нежелательных продуктов, включается мгновенно. Его недостаток — малый резерв субстрата (хватает только на 20 с работы). Обратная реакция может протекать в митохондриях с использованием АТФ, образовавшейся в процессе окислительного фосфорилирования.

Мембрана митохондрий хорошо проницаема как для креатина, так и для креатин-фосфата, а креатинфосфокиназа есть и в саркоплазме, и в межмембранном пространстве митохондрий.

1.2. Миокиназная реакция. Протекает только в мышечной ткани!

Реакция катализируется миокиназой (аденилаткиназой).

Главное значение этой реакции заключается в образовании АМФ — мощного аллостерического активатора ключевых ферментов гликолиза, гликогенолиза, ГБФ-пути.

Не требуют присутствия кислорода (анаэробные процессы). Обладают большим резервом субстратов. Используется гликоген мышц (2 % от веса мышцы) и глюкоза крови, полученная из гликогена печени.

Недостатки следующеи.

  1. Небольшая эффективность: 3 АТФ на один глюкозный остаток гликогена.
  2. Накопление недоокисленных продуктов (лактат).
  3. Гликолиз начинается не сразу — только через 10-15 с после начала мышечной работы.
  4. Окислительное фосфорилирование.

Преимущества.

  1. Это наиболее энергетически выгодный процесс — синтезируется 38 молекул АТФ при окислении одной молекулы глюкозы.
  2. Имеет самый большой резерв субстратов: может использоваться глюкоза, гликоген, глицерин, кетоновые тела.
  3. Продукты распада (CO2 и H2O) практически безвредны.

Недостаток: требует повышенных количеств кислорода.

Важную роль в обеспечении мышечной клетки кислородом играет миоглобин, у которого сродство к кислороду больше, чем у гемоглобина: при парциальном давлении кислорода, равном 30 мм.рт.ст., миоглобин насыщается кислородом на 100 %, а гемоглобин — всего на 30 %. Поэтому миоглобин эффективно отнимает у гемоглобин доставляемый им кислород.

Уменьшение концентрации АТФ смещает равновесие креатинфосфокиназной реакции вправо: используется креатинфосфат. Далее включается гликолиз, так системе окислительного фосфорилирования необходима 1 мин для запуска. Это пусковая фаза мышечной работы.

  1. Дальше изменения метаболизма зависят от интенсивности мышечной работы:
    1. если мышечная работа длительная и небольшой интенсивности, то в дальнейшем клетка получает энергию путем окислительного фосфорилирования — это работа в «аэробной зоне»;
    2. если мышечная работа субмаксимальной интенсивности, то — дополнительно к окислительному фосфорилированию включается гликолиз — это наиболее тяжелая мышечная работа — возникает «кислородная задолженность», это — работа «в смешанной зоне»;
    3. если мышечная работа максимальной интенсивности, но непродолжительная, то механизм окислительного фосфорилирования не успевает включаться. Работа идет исключительно за счет гликолиза. После окончания максимальной нагрузки лактат поступает из крови в печень, где идут реакции глюконеогенеза, или лактат превращается в пируват, который дальше окисляется в митохондриях (ГДФ-путь). Для окисления пирувата нужен кислород, поэтому после мышечной работы максимальной и субмаксимальной интенсивности потребление кслорода мышечными клетками повышено — возвращается кислородная задолженность (долг).

Таким образом, энергетическое обеспечение разных видов мышечной работы различно. Поэтому существует специализация мышц, причем обеспечение энергией у разных мышечных клеток принципиально различается: есть «красные» мышцы и «белые» мышцы.

Красные мышцы — «медленные» оксидативные мышцы. Они имеют хорошее кровоснабжение, много митохондрий, высокая активность ферментов окислительного фосфорилирования. Предназначены для работы в аэробном режиме. Например, такие мышцы служат для поддержания тела в определенном положении (позы, осанка).

Белые мышцы — «быстрые», гликолитические. В них много гликогена, у них слабое кровоснабжение, высока активность ферментов гликолиза, креатинфосфокиназы, миокиназы. Они обеспечивают работу максимальной мощности, но кратковременную.

У человека нет специализированных мышц, но есть специализированные волокна: в мышцах-разгибателях больше «белых» волокон, в мышцах спины больше «красных» волокон.

Существует наследственная предрасположенность к мышечной работе — у одних людей больше «быстрых» мышечных волокон — им рекомендуется заниматься теми видами спорта, где мышечная работа максимальной интенсивности, но кратковременная (тяжелая атлетика, бег на короткие дистанции и тому подобное). Люди, в мышцах которых больше «красных» («медленных») мышечных волокон, наибольших успехов добиваются в тех видах спорта, где необходима длительная мышечная работа средней интенсивности, например, марафонский бег (дистанция 40 км). Для определения пригодности человека к определенному типу мышечных нагрузок используется пункционная биопсия мышц.

В результате скоростных тренировок (bodybuilding) утолщаются миофибриллы, кровоснабжение возрастает, но непропорционально увеличению массы мышечных волокон, количество актина и миозина возрастает, увеличивается активность ферментов гликолиза и креатинфосфокиназы.

Более полезны для организма тренировки «на выносливость». При этом мышечная масса не увеличивается, но увеличивается количество миоглобина, митохондрий и активность ферментов ГБФ-пути.

источник