Меню Рубрики

Что обеспечивается у человека сокращение поперечнополосатых мышц

Поперечно-полосатые мышцы являются активной частью опорно-двигательного аппарата. В результате сократительной деятельности этих мышц происходит перемещение тела в пространстве, перемещение частей тела относительно друг друга, поддержание позы. Кроме того, при мышечной работе вырабатывается тепло.

Каждое мышечное волокно обладает следующими свойствами: возбудимостью, т.е. способностью отвечать на действие раздражителя генерацией ПД, проводимостью — способностью проводить возбуждение вдоль всего волокна в обе стороны от точки раздражения, и сократимостью, т.е. способностью сокращаться или изменять свое напряжение при возбуждении. Возбудимость и проводимость являются функциями поверхностной клеточной мембраны — сарколеммы, а сократимость — функцией миофибрилл, расположенных в саркоплазме.

Методы исследования. В естественных условиях возбуждение и сокращение мышц вызывается нервными импульсами. Для того же, чтобы возбудить мышцу в эксперименте или при клиническом исследовании, ее подвергают искусственному раздражению электрическим током. Непосредственное раздражение самой мышцы называется прямым, а раздражение нерва — непрямым раздражением. Ввиду того, что возбудимость мышечной ткани меньше, чем нервной, приложение электродов непосредственно к мышце еще не обеспечивает прямого раздражения — ток, распространяясь по мышечной ткани, действует в первую очередь на находящиеся в ней окончания двигательных нервов. Чистое прямое раздражение получается лишь при внутриклеточном раздражении или после отравления нервных окончаний кураре. Регистрация мышечного сокращения производится с помощью механических приспособлений — миографов, или специальными датчиками. При изучении мышц используются и электронная микроскопия, регистрация биопотенциалов при внутриклеточном отведении и другие тонкие методики, позволяющие исследовать свойства мышц как в эксперименте, так и в клинике.

В период относительного покоя скелетные мышцы полностью не расслабляются и сохраняют умеренную степень напряжения, т.е. мышечный тонус.

Основные функции мышечной ткани:

1. двигательная – обеспечение движения

2. статическая – обеспечение фиксации, в том числе и в определенной позе

3. рецепторная – в мышцах имеются рецепторы, позволяющие воспринимать собственные движения

4. депонирующая – в мышцах запасаются вода и некоторые питательные вещества.

Физиологические свойства скелетных мышц:

Возбудимость. Ниже, чем возбудимость нервной ткани. Возбуждение распространяется вдоль мышечного волокна.

Проводимость. Меньше проводимости нервной ткани.

Рефрактерный период мышечной ткани более продолжителен, чем нервной ткани.

Лабильность мышечной ткани значительно ниже, чем нервной.

Сократимость– способность мышечного волокна изменять свою длину и степень напряжения в ответ на раздражение пороговой силы.

При изотоническом сокращении изменяется длина мышечного волокна без изменения тонуса. Приизометрическом сокращении возрастает напряжение мышечного волокна без изменения его длины.

В зависимости от условий стимуляции и функционального состояния мышцы может возникнуть одиночное, слитное (тетаническое) сокращение или контрактура мышцы.

Одиночное мышечное сокращение.При раздражении мышцы одиночным импульсом тока возникает одиночное мышечное сокращение.

Амплитуда одиночного сокращения мышцы зависит от количества сократившихся в этот момент миофибрилл. Возбудимость отдельных групп волокон различна, поэтому пороговая сила тока вызывает сокращение лишь наиболее возбудимых мышечных волокон. Амплитуда такого сокращения минимальна. При увеличении силы раздражающего тока в процесс возбуждения вовлекаются и менее возбудимые группы мышечных волокон; амплитуда сокращений суммируется и растет до тех пор, пока в мышце не останется волокон, не охваченных процессом возбуждения. В этом случае регистрируется максимальная амплитуда сокращения, которая не увеличивается, несмотря на дальнейшее нарастание силы раздражающего тока.

Тетаническое сокращение.В естественных условиях к мышечным волокнам поступают не одиночные, а ряд нервных импульсов, на которые мышца отвечает длительным, тетаническим сокращением, илитетанусом. К тетаническому сокращению способны только скелетные мышцы. Гладкие мышцы и поперечнополосатая мышца сердца не способны к тетаническому сокращению из-за продолжительного рефрактерного периода.

Тетанус возникает вследствие суммации одиночных мышечных сокращений. Чтобы возник тетанус, необходимо действие повторных раздражений (или нервных импульсов) на мышцу еще до того, как закончится ее одиночное сокращение.

Если раздражающие импульсы сближены и каждый из них приходится на тот момент, когда мышца только начала расслабляться, но не успела еще полностью расслабиться, то возникает зубчатый тип сокращения (зубчатый тетанус).

Если раздражающие импульсы сближены настолько, что каждый последующий приходится на время, когда мышца еще не успела перейти к расслаблению от предыдущего раздражения, то есть происходит на высоте ее сокращения, то возникает длительное непрерывное сокращение, получившее названиегладкого тетануса.

Гладкийтетанус – нормальное рабочее состояние скелетных мышц обусловливается поступлением из ЦНС нервных импульсов с частотой 40-50 в 1с.

Зубчатый тетанус возникает при частоте нервных импульсов до 30 в 1с. Если мышца получает 10-20 нервных импульсов в 1с, то она находится в состоянии мышечного тонуса, т.е. умеренной степени напряжения.

Утомление мышц.При длительном ритмическом раздражении в мышце развивается утомление. Признаками его являются снижение амплитуды сокращений, увеличение их латентных периодов, удлинение фазы расслабления и, наконец, отсутствие сокращений при продолжающемся раздражении.

Еще одна разновидность длительного сокращения мышц — контрактура. Она продолжается и при снятии раздражителя. Контрактура мышцы наступает при нарушении обмена веществ или изменении свойств сократительных белков мышечной ткани. Причинами контрактуры могут быть отравление некоторыми ядами и лекарственными средствами, нарушение обмена веществ, повышение температуры тела и другие факторы, приводящие к необратимым изменениям белков мышечной ткани.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: При сдаче лабораторной работы, студент делает вид, что все знает; преподаватель делает вид, что верит ему. 9533 — | 7352 — или читать все.

193.124.117.139 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Мышечные ткани составляют активную часть опорно-двигательного аппарата (пассивной частью являются кости.) Важнейшие функции мышечной ткани: сократимость и возбудимость. К данной группе тканей относятся гладкая, скелетная и поперечно-полосатая мышечные ткани.

Эта мышечная ткань встречается в стенках внутренних органах (кишечник, мочевой пузырь), в стенках сосудов, протоках желез. Эволюционно является наиболее древним видом мускулатуры.

Состоит из веретенообразных миоцитов — коротких одноядерных клеток. Слабо выражено межклеточное вещество, клетки сближены друг с другом: благодаря этому возбуждение, возникшее в одной клетке, волнообразно распространяется на все остальные клетки.

Гладкая мышечная ткань отличается своей способностью к длительному тоническому напряжению, что очень важно для работы внутренних органов (к примеру, мочевого пузыря), практически не утомляется. Скелетная мышечная ткань, которую мы изучим чуть позже, такой способностью не обладает и утомляется быстро.

Осуществляется сокращение с помощью клеточных органоидов — миофиламентов, которые расположены в клетке хаотично и не имеют такой упорядоченной структуры, как миофибриллы в скелетной мускулатуре (все познается в сравнении, уже скоро мы их изучим.)

Работа гладких мышц обеспечивается вегетативной (автономной) нервной системой: человек не может управлять ей произвольно. К примеру, невозможно по желанию сузить или расширить зрачок.

Скелетная ткань образует мышцы туловища, конечностей и головы.

В отличие от гладкой мускулатуры, скелетная образована не отдельными одноядерными клетками, а длинными многоядерными волокнами, имеющими до 100 и более ядер — миосимпластами. Миосимпласт представляет совокупность слившихся клеток, имеет длину от нескольких миллиметров до нескольких сантиметром.

Внутри миосимпласта находится саркоплазма, снаружи миосимпласт покрыт сарколеммой.

Характерная черта данной ткани — поперечная исчерченность, выражающаяся в равномерном чередовании светлых и темных полос на мышечном волокне. Это происходит потому, что границы саркомеров в соседних миофибриллах совпадают, вследствие чего все волокно приобретает поперечную исчерченность. Теперь самое время изучить микроскопическую основу мышцы — саркомер.

Сократимость мышечной ткани обусловлена наличием в клетках миофиламентов. Саркомер — элементарная сократительная единица мышцы. Состоит из тонкого белка — актина, и толстого — миозина. Сокращение осуществляется благодаря трению нитей актина о нити миозина, в результате чего саркомер укорачивается.

Источником энергии для сокращения служат молекулы АТФ. К тому же невозможно представить сокращение мышц без участия ионов кальция: именно они связываются с тропонином (белком между нитями актина), что обуславливает соединение актина и миозина. При сокращении мышц выделяется тепло.

Замечу, что трупное окоченение — посмертное затвердевание мышц — связано именно с ионами кальция, которые устремляются в область низкой концентрации (мышцы), способствуя связыванию актина и миозина. Мертвый организм не способен разорвать цикл, возникший в мышцах, в связи с чем наблюдается стойкая мышечная контрактура: конечности очень сложно разогнуть или согнуть.

Вернемся к скелетным мышцам. Имеется еще ряд важных моментов, о которых нужно знать.

В процесс возбуждения вовлекается изолированно один миосимпласт, соседние волокна не возбуждают друг друга, в отличие от гладких миоцитов. Скелетные мышцы быстро утомляются и сокращаются мгновенно (у гладких мышц фазы сокращения и расслабления растянуты во времени.)

Скелетные мышцы поддаются нашему осознанному контролю, их скоращение регулируется произвольно. К примеру, по желанию мы можем изменить скорость движения руки, темп бега, силу прыжка. Мышцы покрыты фасцией, крепятся к костям сухожилиями, и, сокращаясь, приводят в движение суставы.

Мышечная ткань сердца — миокард (от др.-греч. μῦς «мышца» + καρδία — «сердце») — средний слой сердца, составляющий основную часть его массы.

Этот тип мышечной ткани удивительным образом сочетает характеристики двух предыдущих, изученных нами, тканей (возбудимость, сократимость) и имеет одно новое уникальное свойство. Сердечная мышечная ткань состоит из одиночных клеток, имеющих поперечно-полосатую исчерченность.

В некоторых участках эти клетки смыкаются, образуя между собой контакты, благодаря которым возбуждение одной клетки волнообразно передается на соседние, таким образом, охватываются новые участки миокарда. Сокращается эта ткань непроизвольно, не утомляется.

Сердечная ткань обладает уникальным свойством — автоматизмом — способностью возбуждаться и сокращаться без влияний извне, самопроизвольно. Это легко можно подтвердить, изолировав сердце лягушки из организма в физиологический раствор: сокращения сердца в нем будут продолжаться еще несколько часов.

Автоматизм возможен благодаря наличию в миокарде особых пейсмекерных клеток, которые также называют водителями ритма. Они спонтанно генерируют нервные импульсы, которые охватывают весь миокард, в результате чего осуществляется сокращение. Именно благодаря водителям ритма сердце лягушки продолжает биться, будучи полностью отделенным от тела.

Физические нагрузки приводят к гипертрофии мышц (от др.-греч. ὑπερ- «чрез, слишком» + τροφή — «еда, пища») — в них увеличивается количество мышечных волокон, объем мышечной массы нарастает.

В условиях гиподинамии (от греч. ὑπό — «под» и δύνᾰμις — «сила»), то есть пониженной активности, мышцы уменьшаются вплоть до полной атрофии. В худшем случае волокна мышечной ткани перерождаются в соединительную ткань, после чего пациент становится обездвиженным.

Необходимо отметить, что сердечная мышечная ткань также дает ответную реакцию на чрезмерную нагрузку: сердце увеличивается в размере, нарастает масса миокарда. Причиной могут быть генетические заболевания, повышенное артериальное давление. Гипертрофия сердца — состояние, требующее вмешательства врача и наблюдения за пациентом.

В большинстве случае гипертрофия сердца обратима, а у спортсменов наблюдается так называемая физиологическая гипертрофия (вариант нормы).

Мышцы развиваются из среднего зародышевого листка — мезодермы.

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

источник

В молекулярном механизме сокращения мышечных тканей выделяют 2 процесса. Один из них кальций-зависимый, другой — АТФ-зависимый.

В поперечнополосатой и гладкой мышцах кальций-зависимый процесс осуществляется по-разному, а АТФ-зависимый – одинаково.

Кальций-зависимый прОЦесс сокращения в Исчерченной мышце

Сокращение мышечного волокна (или кардиомиоцита) происходит только в том случае, когда на актине открываются участки для связывания миозина, в результате чего миозин соединяется с актином. При этом этапность инициации сокращения происходит в следующей последовательности: сократительный стимул (нервный импульс) проходит по сарколемме и поступает на мембраны Т-трубочек, что стимулирует образование из липидов мембран Т-трубочек инозитол-фосфатов, которые взаимодействуют с рецепторами на мембранах АЭС, что инициирует открытие кальциевых каналов в её мембранах. Выход кальция из АЭС в цитозоль (в покое концентрация кальция в цитозоле 10-7-10-8 ммоль/л, при сокращении — 10-5) и его диффузия к миофибриллам завершается образованием комплексного соединения кальция с тропонином С, в результате чего на актине открываются места для связывания миозина, который соединяется с актином и происходит сокращение.

Кальций-зависимый процесс сокращения в гладкой мышце

Сокращение миоцита происходит вследствие фосфорилирования легкой цепи миозина, только в этом случае головка миозина может связывать и расщеплять АТФ и взаимодействовать с актином. Поступление сократительного стимула (нервный импульс, гормон) инициирует открытие кальциевых каналов в цитомембране миоцита, АЭС и митохондриях. Поступающий через эти каналы кальций соединеняется с кальмодулином. Образующийся комплекс кальций-кальмодулин активирует киназу легких цепей миозина, которая фосфорилирует легкие цепи его головок, в результате чего они приобретают способность связывать и расщеплять АТФ и соединяться с актином.

АТФ-зависимый процесс сокращения

Головка миозина присоединяет молекулу АТФ и расщепляет её до АДФ и фосфата, вследствие чего головка миозина присоединяется к актину. Одновременно с этим от головки миозина отсоединяются АДФ и фосфат. Именно в этот момент головка миозина делает гребковое движение и молекула миозина продвигается вдоль молекулы актина (другими словами – молекула миозина тянет на себя актин) (см. рис. 13). Вслед за этим головка миозина присоединяет новую молекулу АТФ и только после этого отсоединяется от актина и приобретает первоначальное положение.

Таким образом, без АТФ мышца не может ни сократиться, ни расслабиться.

В процессе сокращения мышечных тканей важную роль выполняет гладкая эндоплазматическая сеть (АЭС). В структурных единицах мышечных тканей (особенно в поперечнополосатой) очень хорошо развита АЭС, являющаяся хранилищем ионов кальция. В её мембране имеются кальциевые каналы, по которым кальций выходит из полости АЭС и входит обратно. Выход ионов кальция из плости сети в цитозоль осуществляется пассивно, так как их концентрация в цитозоле намного ниже, чем в полости АЭС, а поступление обратно в полость представляет собой активный транспорт с затратой энергии АТФ.

В процессе сокращения поперечнополосатых мышц длина актиновых и миозиновых филаментов не изменяется, а происходит их смещение относительно друг друга: миозиновые нити вдвигаются в пространства между актиновыми, а актиновые — между миозиновыми; в результате этого: ширина I-диска и H-полоски А-диска уменьшается, в то же время ширина диска А не изменяется, а длина саркомера укорачивается (см. рис. 12).

В структурных единицах исчерченных мышечных тканей АЭС оплетает каждую миофибриллу и близко подходит к Т-трубочкам. Сигналом для выхода кальция из канальцев АЭС являются специальные регуляторные вещества – липидные медиаторы – инозитол-3-фосфат и инозитол-4-фосфат, которые синтезируются в мембранах Т-трубочек только в момент прохождения по ним сократительного импульса. Так как канальцы сети близко подходят к Т-трубочкам, инозитол-фосфаты быстро достигают АЭС и взаимодействуют со специфическими рецепторами для инозитол-фосфатов, находящимися на её мембранах. Это приводит к открытию кальциевых каналов в мембранах АЭС и быстрый выход ионов кальция из полости канальцев в цитозоль, что и инициируют сокращение.

В отличие от поперечнополосатых мышц, в которых миофибриллы существуют постоянно, в гладких мышцах они образуются только в момент сокращения, которое происходит вследствие поступления сигнала от нервных клеток. Под воздействием медиатора в плазмолемме миоцитов образуются кавеолы, в которые путём эндоцитоза поступают ионы кальция, вызывающие полимеризацию миозина и его взаимодействие с актиновыми филаментами. Актиновые филаменты одним своим концом с помощью сшивающих белков прикрепляются к специальным областям внутренней поверхности плазмолеммы, а другим — к миозину. Миозиновые филаменты прикрепляются к специальным местам в цитозоле клетки (нексусы).

Смещение актиновых филаментов относительно миозиновых приводит к укорочению клетки. После прекращения поступления сигнала кальций покидает кавеолы, миозин деполимеризуется, миофибриллы распадаются и клетка расслабляется (рис. 14).

Рис. 14. Схема строения миоцита гладкой мышечной ткани в расслабленном состоянии (А) и при сокращении (Б). 1 – цитолемма: 2 – плотные тельца; 3 – митохондрии; 4 – актиновые филаменты; 5 — миозиновые филаменты.

источник

Топография, строение, классификация и функции мышечной ткани.

Мышечная ткань — это вид ткани, которая осуществляет двигательные процессы в организме человека и животных при помощи специальных сократительных структур — миофибрилл. Миофибриллы — это мышечные нити.

Сокращение мышц приводит к перемещению тела в пространстве, движению его частей, органов, изменению их объема, напряжению стенок и т.д. Обязательным условием работы мышц является их прикрепление к опорным элементам.

Различают 2 типа мышечной ткани:

2. Поперечнополосатая (исчерченная):

Мышечная ткань образована клетками и межклеточным веществом.

1. Гладкая мышечная ткань — состоит из гладких миоцитов. Форма клеток веретенообразная с заостренными концами. В ней есть ядро, цитоплазма (саркоплазма), органеллы и оболочка (сарколемма). Клетки плотно прилежат друг к другу, располагаются параллельно одна другой и формируют мышечные слои. Сократительные миофибриллы располагаются по переферии клеток вдоль ее оси. Опорным аппаратом в гладкой мышечной ткани являются тонкие коллагеновые и эластические волокна, которые располагаются вокруг клеток и связывают их между собой. Гладкомышечная ткань развивается из мезинхимы. Располагается в стенках внутренних органов (кишечник, желудок, матка).

Сокращения непроизвольные, не подчиняются сознанию, хотя находятся под контролем коры больших полушарий головного мозга. Ткань может сокращаться постепенно, медленно и длительное время находиться в состоянии сокращения — тонус или тоническое сокращение — энергию затрачивает экономно и не устает.

Читайте также:  Качаем косые мышцы живота гантелей

а) Скелетная — образует скелетные мышцы, мышцы рта, глотки, частично пищевода, мышцы промежности и др.

Поперечнополосатый миоцит — это клетка цилиндрической формы с тупыми или заостренными концами, которыми волокна прилежат друг к другу или вплетаются в соединительную ткань сухожилий и фасций. У человека поперечнополосатые мышечные волокна имеют длину от нескольких миллиметров до 10см и больше. Сократительным аппаратом являются поперечнополосатые миофибриллы, которые образуют пучок волоконец, идущих от одного конца мышечного волокна к другому. Мышечные волокна имеют большое количество ядер — симпласт (могут иметь до нескольких сотен), много митохондрий, имеют саркоплазму, покрыты сарколеммой, под которой располагаются миофибриллы. В состав миофибрилл входят тончайшие волокна — миофиламенты (протофибриллы). Миофибриллы в мышечных волокнах расположены упорядоченно (одинаковые участки миофибрилл располагаются в волокне на одном и том же уровне), состоят из регулярно повторяющихся фрагментов (саркомеров) с разными оптическими и физико-химическими свойствами, что обуславливает поперечную исчерченность всего волокна. Т.е. одни темные участки — дважды преломляют свет, а другие светлые — вообще не преломляют свет. В цитоплазме мышечных волокон содержится миоглобин — красный цвет.

Различают красные, белые и промежуточные мышечные волокна (разное содержание миоглобина).

Между мышечными волокнами — сеть соединительной ткани — эндомизий. Снаружи мышцу покрывает плотная соединительная ткань — перимизий. Внутренний перимизий проникает вглубь мышцы между пучками мышечных волокон, в нем проходят сосуды и нервы.

Свойства скелетной мышечной ткани:

1. Произвольные (подчиняются коре больших полушарий головного мозга);

2. Непроизвольные (мышцы глотки, пищевода). Характерна высокая скорость сокращения и быстрая утомляемость — тетаническое сокращение.

б) Сердечная есть только в сердце. Поперечнополосатыми мышечными клетками образована мышечная оболочка сердца — миокард. Мышечные клетки с помощью вставочных дисков соединяются в сердечные мышечные волокна. Они также соединяются между собой. Такая система соединения обеспечивает сокращения миокарда как единого целого. Атипичные сердечные миоциты образуют проводящую систему сердца. Пейсмекерные клетки. Пейсмекер — означает — задающий шаг. Клетка сердечной ткани — кардиомиоцит. Ртличие сердечной ткани в том, что состоит не из мышечных волокон, а из мышечных клеток — кардиомиоцитов. Структурная единица сердечной мышечной ткани — кардиомиоцит рабочий.

Кадиомиоциты бывают:

3. Секреторные (клетки предсердий вырабатывают некоторые гормоны). Кардиомиоцит по внешнему строению напоминает поперечнополосатый миоцит, имеет поперечнополосатую исчерченность. Межклеточное вещество аморфное + эластические и коллагеновые волокна. Эластические волокна преобладают. По периферии кардиомиоцита располагаются миофибриллы, которые окружены многочисленными митохондриями (саркосомами) и могут переходить из одной клетки в другую, образуя сердечный функциональный синцитий.

Свойства сердечной мышцы:

3. Сократимость. Сокращения непроизвольные.

Поперечнополосатая мышечная ткань развивается из мезодермы.

Миобласт— клетки, из которых развиваются мышечные волокна.

Мышечная ткань в определенных условиях может восстанавливаться, в отсутствие таких — замещается соединительной тканью, образующей рубец.

Дата добавления: 2014-01-03 ; Просмотров: 2395 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

источник

Поднимите руку. Теперь сожмите кулак. Сделайте шаг. Правда, легко? Человек выполняет привычные действия практически не задумываясь. Около 700 мышц (от 639 до 850, согласно различным способам подсчета) позволяют человеку покорять Эверест, спускаться на морские глубины, рисовать, строить дома, петь и наблюдать за облаками.

Но скелетная мускулатура — далеко не все мускулы человеческого тела. Благодаря работе гладкой мускулатуры внутренних органов, по кишечнику идет перистальтическая волна, совершается вдох, сокращается, обеспечивая жизнь, самая важная мышца человеческого тела — сердце.

Мышца (лат. muskulus) — орган тела человека и животных, образованный мышечной тканью. Мышечная ткань имеет сложное строение: клетки-миоциты и покрывающая их оболочка — эндомизий образуют отдельные мышечные пучки, которые, соединяясь вместе, образуют непосредственно мышцу, одетую для защиты в плащ из соединительной ткани или фасцию.

Мышцы тела человека можно поделить на:

Как видно из названия, скелетный тип мускулатуры крепится к костям скелета. Второе название — поперечно-полосатая (за счет поперечной исчерченности), которая видна при микроскопии.К этой группе относятся мышцы головы, конечностей и туловища. Движения их произвольные, т.е. человек может ими управлять. Эта группа мышц человека обеспечивает передвижение в пространстве, именно их с помощью тренировок можно развить или «накачать».

Гладкая мускулатура входит в состав внутренних органов — кишечника, мочевого пузыря, стенки сосудов, сердца. Благодаря ее сокращению повышается артериальное давление при стрессе или передвигается пищевой комок по желудочно-кишечному тракту.

Сердечная — характерна только для сердца, обеспечивает непрерывную циркуляцию крови в организме.

Интересно узнать, что первое мышечное сокращение происходит уже на четвертой неделе жизни эмбриона – это первый удар сердца. С этого момента и до самой смерти человека сердце не останавливается ни на минуту. Единственная причина остановки сердца в течение жизни — операция на открытом сердце, но тогда за этот важный орган работает АИК (аппарат искусственного кровообращения).

Единицей строения мышечной ткани является мышечное волокно. Даже отдельное мышечное волокно способно сокращаться, что свидетельствует о том, что мышечное волокно – это не только отдельная клетка, но и функционирующая физиологическая единица, способная выполнять определенное действие.

Отдельная мышечная клетка покрыта сарколеммой – прочной эластичной мембраной, которую обеспечивают белки коллаген и эластин. Эластичность сарколеммы позволяет мышечному волокну растягиваться, а некоторым людям проявлять чудеса гибкости – садиться на шпагат и выполнять другие трюки.

В сарколемме, как прутья в венике, плотно уложены нити миофибрилл, составленные из отдельных саркомеров. Толстые нити миозина и тонкие нити актина формируют многоядерную клетку, причем диаметр мышечного волокна – не строго фиксированная величина и может варьироваться в довольно большом диапазоне от 10 до 100 мкм. Актин, входящий в состав миоцита, — составная часть структуры цитоскелета и обладает способностью сокращаться. В состав актина входит 375 аминокислотных остатка, что составляет около 15% миоцита. Остальные 65 % мышечного белка представлены миозином. Две полипептидные цепочки из 2000 аминокислот формируют молекулу миозина. При взаимодействии актина и миозина формируется белковый комплекс — актомиозин.

Когда анатомы в Средние века начали темными ночами выкапывать трупы, чтобы изучить строение человеческого тела, встал вопрос о названиях мускулов. Ведь нужно было объяснить зевакам, которые собрались в анатомическом театре, что же ученый в данный момент кромсает остро заточенным ножом.

Ученые решили их называть либо по костям, к которым они крепятся (например, грудинно-ключично-сосцевидная мышца), либо по внешнему виду (например, широчайшая мышца спины или трапециевидная), либо по функции, которую они выполняют (длинный разгибатель пальцев). Некоторые мышцы имеют исторические названия. Например, портняжная названа так потому, что приводила в движение педаль швейной машины. Кстати, эта мышца — самая длинная в человеческом теле.

источник

Автор: Claudia Koch-Remmele

Скелетная мышца состоит из многочисленных пучков мышечных волокон (фасцикул), видимых невооруженным глазом. Один пучок мышечных волокон состоит приблизительно из 10-20 параллельно расположенных мышечных волокон. Каждое мышечное волокно, в свою очередь, содержит 1000-2000 миофибрилл (Silbernagl, Despopoulos, 1983; Klee, 2003). Каждая миофибрилла образована несколькими тысячами последовательно расположенных саркомеров (Linde), 2006), которые являются сократительными элементами мышечного волокна (рис. 1.1).

Поперечно-полосатое мышечное волокно представляет собой мельчайшую самостоятельную структурную единицу скелетной мышцы. Это одиночная цилиндрическая клетка, длина которой может достигать от нескольких миллиметров до 30 см (Cabri, 1999). Наиболее длинными мышечными волокнами в организме человека обладает портняжная мышца (m. sartorius), один из сгибателей бедра. Толщина мышечного волокна зависит от клеточного питания (трофики) и нагрузки на мышцу и варьирует от 10 до 100 мкм. Например, мышцы бедра имеют очень толстые мышечные волокна, тогда как мышцы глазного яблока состоят из тонких волокон (Cabri, 1999). Толщина мышечных волокон в мышце относительно постоянна. Таким образом, брюшко мышцы формируется не из-за утолщения волокон в центре мышцы, а из-за неравной длины мышечных волокон, накладывающихся друг на друга, что образует веретенообразную форму мышцы. Мышечное волокно имеет несколько сотен ядер, объединенных одной клеточной мембраной (сарколеммой) и расположенных в цитоплазме (саркоплазме). В саркоплазме мышечных волокон находятся сократительные миофибриллы, саркоплазматический ретикулум (разновидность эндоплазматического ретикулума), митохондрии (саркосомы), лизосомы, капельки жира и гранулы гликогена. Помимо этого, в саркоплазме растворены молекулы креатинфосфата, аминокислоты, гликолитические ферменты, гликоген и другие вещества. Большую часть саркоплазмы занимают миофибриллы. Они тянутся от одного конца волокна к другому и имеют толщину около 1-2 мкм (Cabri, 1999). При изучении под электронным микроскопом видно, что каждая мио-фибрилла состоит из двух белковых миофиламентов (см. рис. 1.1).

  • Актиновые миофиламенты — имеют в поперечнике около 5-8 нм (Tillmann, 1998; Klee, 2003). Вокруг актина дополнительно закручены нити тропомиозина, а на равных интервалах (примерно каждые 40 нм) прикрепляются молекулы тро-понина (Silbernagl, Despopoulos, 1983). Тропонин (Тп) состоит из трех субъединиц: Tn-С (образует связь с Са2+), Тп-Т (соединяет тропонин с тропомиозином) и Тп-I (блокирует образование мосто-видных связей между миозином и актином в состоянии покоя). При соединении субъединицы Тп-С с ионами кальция это тормозящее действие прекращается и актиновые филаменты прикрепляются к Z-линии.
  • Миозиновые филаменты — расположены между филаментами актина. Миозиновые филаменты образованы из пучка плотно соединенных молекул миозина (около 150-360) и составляют 1,6 мкм в длину и 10-14 мкм в толщину. Молекулы миозина имеют двойные головки, прикрепляющиеся с помощью шейки к шарнирному участку (тяжелый меромиозин). Шейка молекулы обеспечивает ее подвижность и переходит в длинную хвостовую нить (легкий меромиозин). Благодаря шарнирным участкам миозин может образовывать обратимые связи с актином и вызывать взаимное скольжение нитей актина и миозина относительно друг друга.

Отрезок между Z-линиями называется саркомером. Микроскопически саркомер состоит из чередующихся светлых и темных полосок и линий, обусловленных упорядоченным расположением толстых нитей актина и тонких нитей миозина. Благодаря различному преломлению света актиновыми и миозиновыми филаментами формируется характерная поперечная исчерченность мышечного волокна. Актиновые филаменты в меньшей степени преломляют свет (изотропные) и выглядят как светлые линии, в то время как сильно преломляющие свет миозиновые филаменты (анизотропные) выглядят темными полосками под микроскопом. Отрезок между двумя соседними саркомерами, содержащий только нити актина, называется I-диском (см. рис. 1.1). В середине I-диска видна темная линия — Z-линия — граница саркомера. Между двумя I-дисками расположен A-диск, состоящий как из миозина, так и из актина. В середине A-диска в состоянии расслабления виден еще один светлый промежуток — Н-диск, — содержащий только миозин. При сокращении нити актина сдвигаются к центру миозинового филамента и Н-диск исчезает. Длина саркомера в состоянии покоя, по данным литературы, варьирует и составляет от 2,0 (Trombitas et al., 1998) до 2,2 мкм (Klee, 2003).

Помимо актина и миозина в мышечном волокне содержатся и другие белки (рис. 1.2). В отличие от вышеперечисленных белков они не относятся к сократительным. Их функцией является поддержание структурной организации внутренних компонентов мышечного волокна, благодаря чему достигается стабилизация волокна во всех плоскостях и его внутренние компоненты могут выдерживать внешние и внутренние нагрузки как в продольном, так и в поперечном направлении. Эти белки образуют следующие третичные филаменты (Maruyama et al., 1984; Street, 1983).

  • Небулиновые филаменты — состоят из белка небулина и расположены параллельно тонким актиновым нитям. Небулиновые филаменты прикрепляются к Z-линиям и стабилизируют актиновые филаменты и контролируют расположение молекул актина (Cabri, 1999).
  • Титиновые филаменты (коннектиновые филаменты) — состоят из одной молекулы белка титина. Данные филаменты длиной 1 нм в натянутой мышце занимают половину саркомера, соединяя М-линию и Z-линию (Maruyama et al., 1984). Титиновые филаменты расположены параллельно нитям миозина и прикрепляются к их свободным концам. Миозиновый комплекс, соединяясь с 3-6 титиновыми филаментами, образует функциональную единицу (Klee, 2003). Ее функцией является удерживание миозиновых филаментов при сокращении в центре саркомера. Между Z-линией и концами нитей миозина они образуют высокоэластичную PEVK-область [образуемую пролином (Pro или Р), глутаминовой кислотой (Glu или Е), валином (Val или V) и лизином (Lys или К); Linke et al., 1996]. Благодаря наличию этого эластичного участка саркомер может восстанавливать свою изначальную длину (длину в покое) после растяжения за счет притягивания миозиновых филаментов к Z-линиям. Это позволяет восстановить оптимальное взаиморасположение актиновых и миозиновых нитей. Таким образом, титиновые филаменты ответственны за остаточное напряжение мышц при их расслаблении (тонус мышцы) (Wiemann et al., 1998) (см. разд. 3.6.7).
  • Промежуточные филаменты — расположены перпендикулярно направлению сократительных филаментов. а-Актин спиралеобразно окружает Z-линию и участвует в стабилизации актиновых филаментов. Белок десмин прикрепляется к сарколемме и соединяет друг с другом соседние миофибриллы, стабилизируя таким образом мышечное волокно в поперечном направлении (Street, 1993; Wang, 1984). Это позволяет сохранить структуру А- и I-дисков и поперечную исчерченность мышечных волокон.
  • Поперечно расположенные М-белки, миомезин и М-креатинкиназы (М-КК) образуют в центре Н-диска так называемую М-линию. Миомезин при этом играет функцию якоря для титина, М-КК обеспечивает образование АТФ, а М-белок соединяет друг с другом и удерживает миозиновые филаменты.
  • С-белки образуют С-линии. Продольно расположенные филаменты из С-белка стабилизируют миозиновые нити в саркомере.
  • Короткие филаментные и глобулярные белки — расположены в сарколемме (а- и β-интегрин), в саркоплазматической мембране (дистрофии, талин, винкулин) и вне сарколеммы (ламинин и фибронектин), контактируя с оболочкой сократительных волокон.

Запомните: Саркомер состоит из тонких актиновых и толстых миозиновых филаментов, а также несократительных «третичных филаментов». Несколько тысяч последовательно расположенных саркомеров образуют миофибриллу. Большое количество рядом расположенных миофибрилл, в свою очередь, формирует мышечное волокно. Параллельно расположенные мышечные волокна образуют пучок мышечных волокон (фасцикулу), из которых состоит анатомически определяемая мышца.

Миофибриллы окружены эндоплазматическим ретикулумом, который в мышцах называется саркоплазматическим ретикулумом. Он представляет собой систему продольно расположенных плоских разветвленных трубочек, соединенных между собой (L-система, продольная система) и отграниченных от сарколеммы и межклеточного пространства (рис. 1.3).

Около Z-линий на протяжении всей миофибриллы саркоплазматический ретикулум образует мешковидные расширения (терминальные цистерны). Эта органелла играет роль резервуара ионов кальция и ответственна за их накопление и обратный захват. К саркоплазматическому ретикулуму также можно отнести поперечную систему (Т-система, Т-трубочки). Под поперечными трубочками понимают систему вертикально расположенных выпячиваний сарколеммы, соединяющих ее с экстрацеллюлярным пространством. Данные выпячивания диаметром около 50 нм располагаются по бокам от Z-линий (Forssmann, 1985). Они выполняют роль ионных каналов, которые открываются и закрываются в зависимости от потенциала действия. Кроме этого, они обусловливают быстрое проведение потенциала действия от поверхности клеточной мембраны к центру клетки и одновременное сокращение всех миофибрилл внутри одного мышечного волокна. В определенных местах поперечные трубочки располагаются между двумя L-цистернами продольной системы, образуя так называемую триаду. За счет накопления мембранного потенциала в щелевидных контактах (T-L-соединение) происходит распространение возбуждения по L-системе всей мышечной клетки, что вызывает высвобождение ионов кальция.

Другими важными компонентами саркоплазмы являются митохондрии, в мышечных волокнах называемые саркосомами. Количество саркосом варьирует в зависимости от типа мышечных волокон. Саркосомы находятся между миофибриллами или непосредственно под сарколлемой (см. рис. 1.3). В центре волокна саркосомы расположены либо циркулярно вокруг Z-линии, либо между миофибриллами. Между миофиблиллами в виде «ожерелий» находятся маленькие гранулы гликогена. Их также в больших количествах обнаруживают около клеточного ядра. Часто около митохондрий в саркоплазме видны липиды в виде маленьких капель. Количество липидов в мышечном волокне зависит от его типа.

Сократительные элементы мышечных волокон и все компоненты саркоплазмы окружены клеточной мембраной (сарколеммой). Сарколемма представляет собой эластичную способную к возбуждению мембрану, функцией которой является открытие и закрытие ионных каналов в ответ на возбуждающие стимулы и их дальнейшая передача по Т-системе. Сарколемма, в свою очередь, окружена базальной мембраной, которая отделяет мышечные волокна от соединительной ткани мышцы (рис. 1.4).

Помимо сократительных элементов скелетные мышцы состоят из соединительной ткани, окружающей мышцы и содержащей кровеносные сосуды и нервы.

Соединительная ткань является важным компонентом скелетных мышц и образует вместе с мышечными волокнами функциональную единицу мышцы. Помимо соединительной ткани брюшка мышц к ней относят и соединительную ткань мышечно-сухожильных соединений, сухожилий и костно-сухожильных соединений. Основными компонентами соединительной ткани мышц являются фибробласты и межклеточный матрикс. Межклеточный матрикс состоит из коллагеновых и эластических волокон (причем эластические волокна представлены в небольшом количестве), основного вещества (протеогликаны и глюкозаминогликаны), неколлагеновых соединительных и структурных белков и воды. Соединительная ткань под микроскопом имеет вид белой хрупкой паутинообразной сети (van den Berg, 1999). Тем не менее именно благодаря большому количеству соединительной ткани достигается большая стабильность мышечных волокон и хорошая механическая защита — как при сокращении (утолщение брюшка мышцы), так и при растяжении. Соединительная ткань обеспечивает хорошую смещаемость волокон и пучков волокон относительно друг друга во время цикла сокращений, а также самой мышцы относительно окружающих тканей. Кроме того, она уменьшает потерю силы за счет снижения трения. Соединительная ткань передает силу сокращения мышечных волокон через сухожилия к костям и делает возможными движения в суставах или стабилизацию позы. Соединительнотканная прослойка, прикрепляющаяся непосредственно к базальной мембране волокон и разделяющая их, называется эндомизием. Группы волокон разделяются более плотными перегородками, перимизием, и образуют пучки мышечных волокон (фасцикулы). Эпимизий представляет собой слой рыхлой соединительной ткани, соединяющий пучки волокон и окружающий каждую анатомически выделяемую мышцу. Соединительнотканные слои соединяются между собой и богаты нервами, кровеносными и лимфатическими сосудами. Соединительная ткань мышечного брюшка и базальная мембрана волокон также плотно соединяются друг с другом: с помощью ретикулярных волокон, а также поперечными мостовидными нитями (перекрестные волокна) между слоями. Соединение тканей обеспечивается неколлагеновыми связывающими белками (винкулин, талин, а-актин, интегрин, витронектин, ламинин, тенасцин и фибронектин) в мембранах (базальная мембрана, сарколемма) (van den Berg, 1999). К эпимизию прилегает фасция мышцы (собственная фасция), придающая мышце ее анатомическую форму и отграничивающая ее от прилегающих тканей. Часто между эпимизием и фасцией может находиться жировая ткань, играющая роль прокладки и хранилища энергетических ресурсов. К собственной фасции мышцы, в свою очередь, прилегают мышечные фасции, которые объединяют на конечностях группы мышц (например, мышцы-разгибатели плеча).

Читайте также:  Взорви свои грудные мышцы

Запомните: Отдельные мышечные волокна разделяются соединительнотканными перегородками — эндомизием. Перимизий окружает пучки мышечных волокон (фасцикулы), а эпимизий окружает анатомически выделяемую мышцу. Поверх эпимизия расположена собственная фасция мышцы. Группы мышц объединяются общими мышечными фасциями в единые функциональные группы (например, мышечная фасция мышц-сгибателей плеча).

В зависимости от выполняемой функции мышца может состоять из различных типов мышечных волокон. Из-за своей способности сокращаться и расслабляться за доли секунды экстрафузальные волокна также называют быстросокращающимися волокнами (англ, twitch-fibers). В зависимости от специфической структуры (изоформ) ферментов и белков в миофибриллах, например наличия тяжелых миозиновых цепей (МНС — myosin heavy chain), и их распределения в мышечных волокнах выделяют несколько типов мышечных волокон. По морфологическим, биохимическим и физиологическим особенностям выделяют два типа экстрафузальных мышечных волокон:

  • волокна I типа (МНС-I), или медленные волокна;
  • волокна II типа (МНС-Н), или быстрые волокна.

Волокна I типа (МНС-I), или медленные (окислительные) волокна, — тонкие мышечные волокна диаметром 50 мкм, характеризующиеся относительно медленными сокращениями (с частотой 20-30 Гц). При этом они развивают небольшую силу и медленно утомляются. Волокна I типа хорошо кровоснабжаются и в отличие от волокон II типа имеют большее количество миоглобина, что придает им характерный красный цвет (красные волокна). Они также отличаются наличием многочисленных крупных митохондрий, содержащих ферменты окислительного фосфорилирования. Хотя в медленных волокнах больше миозина, чем в быстрых мышечных волокнах, они содержат меньше фермента АТФазы и медленнее сокращаются. Иннервация обеспечивается малыми а-мотонейронами спинного мозга. Благодаря низкой скорости сокращения они больше приспособлены к длительным нагрузкам, что, например, очень важно для поддержания позы.

Волокна II типа (МНС-II), или быстрые волокна, — толще, чем мышечные волокна I типа, и достигают в диаметре 80-100 мкм. Они отличаются быстрыми сокращениями (частота 50-100 Гц), развивают большую силу и быстрее утомляются. Эти волокна хуже кровоснабжаются и имеют меньше митохондрий, липидов и миоглобина. В литературе они описываются как белые волокна. В отличие от медленных волокон, быстрые волокна содержат в основном ферменты анаэробного окисления и больше миофибрилл. Эти миофибриллы отличаются меньшим содержанием миозина, который, однако, сокращается быстрее и лучше метаболизирует аденозинтрифосфат (АТФ). Кроме того, в этих волокнах лучше выражен саркоплазматический ретикулум. Благодаря высокой скорости сокращения и быстрой утомляемости эти волокна способны на кратковременную работу. Иннервация осуществляется большими а-мотонейронами спинного мозга. По данным литературы, волокна II типа разделяют на три группы (Forssman, 1985).

  • Волокна IIа типа — быстрые волокна, средней толщины. Более выносливы, чем волокна IIЬ типа, но утомляются быстрее, чем волокна I типа. Способны к выраженному сокращению, при этом развивают среднюю силу. Источниками энергии являются как окислительные, так анаэробные механизмы (быстрые окислительные волокна).
  • Волокна IIЬ типа(волокна IIх типа) — крупные, быстро сокращающиеся и быстро утомляющиеся волокна. Активируются при кратковременных нагрузках и развивают большую силу. Получают энергию через процессы анаэробного окисления, источником энергии является гликоген (быстрые гликолитические волокна). В этих волокнах обнаруживают большое количество гликогена и мало митохондрий. Поскольку скорость сокращения самых быстрых мышечных волокон несколько выше, чем скорость сокращений волокон IIЬ типа, самые быстрые волокна называются в литературе волокнами IIх типа (Friedman, 2007).
  • Волокна IIс типа — эти волокна не похожи на волокна ни I, ни II типа. Они проявляют как окислительную, так и гликолитическую активность и представлены лишь в небольшом количестве (около 1 %). В зависимости от типа тренировок они могут переходить в волокна I или II типа (Seidenspinner, 2005).

Медленные и быстрые мышечные волокна представлены в любой мышце организма человека, различаются лишь их соотношения. Так, в мышцах, для функции которых необходимы кратковременные сильные сокращения, больше быстрых волокон (фазные мышцы), а в мышцах опоры и поддержания позы (постуральные, или тонические, мышцы) больше медленных волокон. Мышечные волокна в пределах одной моторной единицы всегда относятся к одному типу. Считается, что процентное соотношение быстрых и медленных волокон генетически детерминировано и, как правило, сопоставимо (около 40-50 % волокон I типа и около 50-60 % волокон II типа у нетренированных лиц; Seidenspinner, 2005). Конечно, возможны генетически обусловленные исключения, например у прирожденного стайера содержание волокон I типа может достигать 90 %, а у прирожденного спринтера может быть до 90 % волокон II типа (Hollmann, Hettinber, 1990; Weineck, 2003). В научной литературе описано, что при интенсивных тренировках на выносливость возможна трансформация белых волокон II типа в красные волокна I типа. Также возможна трансформация внутри II типа из волокон IIЬ (IIх) в На (Tillmann, 1998). Переход красных волокон I типа в белые волокна II типа описан только в небольшом количестве исследований (Kadi et al., 2005; Liu et al., 2003). Это можно объяснить тем, что скорость сокращения мышц трудно поддается тренировке (Seidenspinner, 2005).

Обзор важнейших мышечных волокон и их физиологических особенностей

источник

По морфологическим признакам выделяют три группы мышц:

1) поперечно-полосатые мышцы (скелетные мышцы);

3) сердечную мышцу (или миокард).

Функции поперечно-полосатых мышц:

1) двигательная (динамическая и статическая);

1) поддержание давления в полых органах;

2) регуляция давления в кровеносных сосудах;

3) опорожнение полых органов и продвижение их содержимого.

Функция сердечной мышцы – насосная, обеспечение движения крови по сосудам.

Физиологические свойства скелетных мышц:

1) возбудимость (ниже, чем в нервном волокне, что объясняется низкой величиной мембранного потенциала);

2) низкая проводимость, порядка 10–13 м/с;

3) рефрактерность (занимает по времени больший отрезок, чем у нервного волокна);

5) сократимость (способность укорачиваться или развивать напряжение).

Различают два вида сокращения:

а) изотоническое сокращение (изменяется длина, тонус не меняется);

б) изометрическое сокращение (изменяется тонус без изменения длины волокна). Различают одиночные и титанические сокращения. Одиночные сокращения возникают при действии одиночного раздражения, а титанические возникают в ответ на серию нервных импульсов;

6) эластичность (способность развивать напряжение при растягивании).

Гладкие мышцы имеют те же физиологические свойства, что и скелетные мышцы, но имеют и свои особенности:

1) нестабильный мембранный потенциал, который поддерживает мышцы в состоянии постоянного частичного сокращения – тонуса;

2) самопроизвольную автоматическую активность;

3) сокращение в ответ на растяжение;

4) пластичность (уменьшение растяжения при увеличении растяжения);

5) высокую чувствительность к химическим веществам.

Физиологической особенностью сердечной мышцы является ее автоматизм. Возбуждение возникает периодически под влиянием процессов, протекающих в самой мышце. Способностью к автоматизму обладают определенные атипические мышечные участки миокарда, бедные миофибриллами и богатые саркоплазмой.

1. Генерация потенциала действия. Передача возбуждения на мышечное волокно происходит с помощью ацетилхолина. Взаимодействие ацетилхолина (АХ) с холинорецепторами приводит к их активации и появлению потенциала действия, что является первым этапом мышечного сокращения.

2. Распространение потенциала действия. Потенциал действия распространяется внутрь мышечного волокна по поперечной системе трубочек, которая является связывающим звеном между поверхностной мембраной и сократительным аппаратом мышечного волокна.

3. Электрическая стимуляция места контакта приводит к активации фермента и образованию инозилтрифосфата, который активирует кальциевые каналы мембран, что приводит к выходу ионов Ca и повышению их внутриклеточной концентрации.

Теория хемомеханического этапа мышечного сокращения была разработана О. Хаксли в 1954 г. и дополнена в 1963 г. М. Девисом. Основные положения этой теории:

1) ионы Ca запускают механизм мышечного сокращения;

2) за счет ионов Ca происходит скольжение тонких актиновых нитей по отношению к миозиновым.

В покое, когда ионов Ca мало, скольжения не происходит, потому что этому препятствуют молекулы тропонина и отрицательно заряды АТФ, АТФ-азы и АДФ. Повышенная концентрация ионов Ca происходит за счет поступления его из межфибриллярного пространства. При этом происходит ряд реакций с участием ионов Ca:

1) Ca2+ реагирует с трипонином;

3) Ca2+ снимает заряды с АДФ, АТФ, АТФ-азы.

Взаимодействие ионов Ca с тропонином приводит к изменению расположения последнего на актиновой нити, открываются активные центры тонкой протофибриллы. За счет них формируются поперечные мостики между актином и миозином, которые перемещают актиновую нить в промежутки между миозиновой нитью. При перемещении актиновой нити относительно миозиновой происходит сокращение мышечной ткани.

Итак, главную роль в механизме мышечного сокращения играют белок тропонин, который закрывает активные центры тонкой протофибриллы и ионы Ca.

Физиология скелетных и гладких мышц

У позвоночных и человека три вида мышц: поперечнополосатые мышцы скелета, поперечнополосатая мышца сердца – миокард и гладкие мышцы, образуюцие стенки полых внутренних органов и сосудов.

Анатомической и функциональной единицей скелетных мышц является нейромоторная единица — двигательный нейрон и иннервируемая им группа мышечных волокон. Импульсы, посылаемые мотонейроном, приводят в действие все образующие ее мышечные волокна.

Скелетные мышцы состоят из большого количества мышечных волокон. Волокно поперечнополосатой мышцы имеет вытянутую форму, диаметр его от 10 до 100 мкм, длина волокна от нескольких сантиметров до 10-12 см. Мышечная клетка окружена тонкой мембраной – сарколеммой, содержит саркоплазму (протоплазму) и многочисленные ядра. Сократительной частью мышечного волокна являются длинные мышечные нити – миофибриллы, состоящие в основном из актина, проходящие внутри волокна от одного конца до другого, имеющие поперечную исчерченность. Миозин в гладких мышечных клетках находится в дисперсном состоянии, но содержит много белка, играющего важную роль в поддержании длительного тонического сокращения.

В период относительного покоя скелетные мышцы полностью не расслабляются и сохраняют умеренную степень напряжения, т.е. мышечный тонус.

Основные функции мышечной ткани:

1)двигательная – обеспечение движения

2)статическая – обеспечение фиксации, в том числе и в определенной позе

3)рецепторная – в мышцах имеются рецепторы, позволяющие воспринимать собственные движения

4)депонирующая – в мышцах запасаются вода и некоторые питательные вещества.

Физиологические свойства скелетных мышц:

Возбудимость. Ниже, чем возбудимость нервной ткани. Возбуждение распространяется вдоль мышечного волокна.

Проводимость. Меньше проводимости нервной ткани.

Рефрактерный период мышечной ткани более продолжителен, чем нервной ткани.

Лабильность мышечной ткани значительно ниже, чем нервной.

Сократимость – способность мышечного волокна изменять свою длину и степень напряжения в ответ на раздражение пороговой силы.

При изотоническом сокращении изменяется длина мышечного волокна без изменения тонуса. При изометрическом сокращении возрастает напряжение мышечного волокна без изменения его длины.

В зависимости от условий стимуляции и функционального состояния мышцы может возникнуть одиночное, слитное (тетаническое) сокращение или контрактура мышцы.

Одиночное мышечное сокращение. При раздражении мышцы одиночным импульсом тока возникает одиночное мышечное сокращение.

Амплитуда одиночного сокращения мышцы зависит от количества сократившихся в этот момент миофибрилл. Возбудимость отдельных групп волокон различна, поэтому пороговая сила тока вызывает сокращение лишь наиболее возбудимых мышечных волокон. Амплитуда такого сокращения минимальна. При увеличении силы раздражающего тока в процесс возбуждения вовлекаются и менее возбудимые группы мышечных волокон; амплитуда сокращений суммируется и растет до тех пор, пока в мышце не останется волокон, не охваченных процессом возбуждения. В этом случае регистрируется максимальная амплитуда сокращения, которая не увеличивается, несмотря на дальнейшее нарастание силы раздражающего тока.

Тетаническое сокращение. В естественных условиях к мышечным волокнам поступают не одиночные, а ряд нервных импульсов, на которые мышца отвечает длительным, тетаническим сокращением, или тетанусом. К тетаническому сокращению способны только скелетные мышцы. Гладкие мышцы и поперечнополосатая мышца сердца не способны к тетаническому сокращению из-за продолжительного рефрактерного периода.

Тетанус возникает вследствие суммации одиночных мышечных сокращений. Чтобы возник тетанус, необходимо действие повторных раздражений (или нервных импульсов) на мышцу еще до того, как закончится ее одиночное сокращение.

Если раздражающие импульсы сближены и каждый из них приходится на тот момент, когда мышца только начала расслабляться, но не успела еще полностью расслабиться, то возникает зубчатый тип сокращения (зубчатый тетанус).

Если раздражающие импульсы сближены настолько, что каждый последующий приходится на время, когда мышца еще не успела перейти к расслаблению от предыдущего раздражения, то есть происходит на высоте ее сокращения, то возникает длительное непрерывное сокращение, получившее название гладкого тетануса.

Гладкий тетанус – нормальное рабочее состояние скелетных мышц обусловливается поступлением из ЦНС нервных импульсов с частотой 40-50 в 1с.

Зубчатый тетанус возникает при частоте нервных импульсов до 30 в 1с. Если мышца получает 10-20 нервных импульсов в 1с, то она находится в состоянии мышечного тонуса, т.е. умеренной степени напряжения.

Утомление мышц. При длительном ритмическом раздражении в мышце развивается утомление. Признаками его являются снижение амплитуды сокращений, увеличение их латентных периодов, удлинение фазы расслабления и, наконец, отсутствие сокращений при продолжающемся раздражении.

Еще одна разновидность длительного сокращения мышц — контрактура. Она продолжается и при снятии раздражителя. Контрактура мышцы наступает при нарушении обмена веществ или изменении свойств сократительных белков мышечной ткани. Причинами контрактуры могут быть отравление некоторыми ядами и лекарственными средствами, нарушение обмена веществ, повышение температуры тела и другие факторы, приводящие к необратимым изменениям белков мышечной ткани.

источник

Представленный фрагмент произведения размещен по согласованию с распространителем легального контента ООО «ЛитРес» (не более 20% исходного текста). Если вы считаете, что размещение материала нарушает чьи-либо права, то сообщите нам об этом.

Текущая страница: 6 (всего у книги 54 страниц) [доступный отрывок для чтения: 36 страниц]

У человека существует три вида мышц: поперечно-полосатые скелетные мышцы, особая поперечно-полосатая сердечная мышца и гладкие мышцы внутренних органов.

5.1. Функциональная организация скелетных мышц

Скелетные мышцы человека содержат около 300 млн мышечных волокон и имеют площадь порядка 3 м 2 . Целая мышца представляет собой отдельный орган, а мышечное волокно – клетку. Мышцы иннервируются двигательными нервами, передающими из центров моторные команды, чувствительными нервами, несущими в центры информацию о напряжении и движении мышц, и симпатическими нервными волокнами, влияющими на обменные процессы в мышце. Функции скелетных мышц заключаются в перемещении частей тела друг относительно друга, перемещении тела в пространстве (локомоция) и поддержании позы тела.

Функциональной единицей мышцы является двигательная единица, состоящая из мотонейрона спинного мозга, его аксона (двигательного нерва) с многочисленными окончаниями и иннервируемых им мышечных волокон. Возбуждение мотонейрона вызывает одновременное сокращение всех входящих в эту единицу мышечных волокон. Двигательные единицы (ДЕ) небольших мышц содержат малое число мышечных волокон (ДЕ мышц глазного яблока 3–6 волокон, мышц пальцев руки 10–25 волокон), а ДЕ крупных мышц туловища и конечностей – до нескольких тысяч (например, ДЕ икроножной мышцы человека – около 2000 мышечных волокон).

Мелкие мышцы иннервируются из одного сегмента спинного мозга, а крупные мышцы – мотонейронами 2–3 спинальных сегментов. Мотонейроны, иннервирующие одну мышцу, составляют общий мотонейронный пул, в котором могут находиться мотонейроны различных размеров. Большие ДЕ образованы крупными мотонейронами, которые имеют толстые аксоны, множество концевых разветвлений и большое число связанных с ними мышечных волокон. Такие ДЕ имеют низкую возбудимость, генерируют высокую частоту нервных импульсов (порядка 20–50 импульсов в 1 с) и характеризуются высокой скоростью проведения возбуждения. Они включаются в работу лишь при высоких нагрузках на мышцу. Мелкие ДЕ имеют мотонейроны небольших размеров, тонкие и медленно проводящие аксоны, малое число мышечных волокон. Они легко возбудимы и включаются в работу при незначительных мышечных усилиях. Нарастание нагрузки вызывает активацию различных ДЕ скелетной мышцы в соответствии с их размерами – от меньших к большим (правило Хеннемана).

Мышечное волокно представляет собой вытянутую клетку (ее диаметр около 10-100 мкм, а длина 10–12 см). В состав волокна входят его оболочка – сарколемма, жидкое содержимое – саркоплазма, ядро, энергетические центры – митохондрии, белковые депо – рибосомы, сократительные элементы – миофибриллы, а также замкнутая система продольных трубочек и цистерн, расположенных вдоль миофибрилл и содержащих ионы Са 2+ ,– саркоплазматический ретикулум. Поверхностная мембрана клетки через равные промежутки образует поперечные трубочки, входящие внутрь мышечного волокна, по которым внутрь клетки проникает потенциал действия при ее возбуждении.

Миофибриллы – это тонкие волокна (диаметр 1–2 мкм, длина 2–2,5 мкм), содержащие два вида сократительных белков (протофибрилл): тонкие нити актина и вдвое более толстые нити миозина. Они расположены таким образом, что вокруг миозиновых нитей находится 6 актиновых нитей, а вокруг каждой актиновой – 3 миозиновых. Миофибриллы разделены Ζ-мембранами на отдельные участки – capкомеры, в средней части которых расположены преимущественно миозиновые нити, а актиновые нити прикреплены к Ζ-мембранам по бокам саркомера. (Разная способность актина и миозина преломлять свет создает в состоянии покоя мышцы ее поперечно-полосатый вид в световом микроскопе.)

Читайте также:  Гимнастика для скелетных мышц

Нити актина составляют около 20 % сухого веса миофибрилл. Актин состоит из двух форм белка: 1) глобулярной формы – в виде сферических молекул и 2) палочковидных молекул тропомиозина, скрученных в виде двунитчатых спиралей в длинную цепь. На протяжении этой двойной актиновой нити каждый виток содержит по 14 молекул глобулярного актина (по 7 молекул с обеих сторон), наподобие нитки с бусинками, а также центры связывания ионов Са 2+ . В этих центрах содержится особый белок (тропонин), участвующий в образовании связи актина с миозином.

Миозин составлен из уложенных параллельно белковых нитей (эта часть представляет собой так называемый легкий меромиозин). На обоих концах его имеются отходящие в стороны шейки с утолщениями – головками (эта часть – тяжелый меромиозин), благодаря которым образуются поперечные мостики между миозином и актином.

5.2. Механизмы сокращения и расслабления мышечного волокна

При произвольной внутренней команде сокращение мышцы человека начинается примерно через 0,05 с (50 мс). За это время моторная команда передается от коры больших полушарий к мотонейронам спинного мозга и по двигательным волокнам к мышце. Подойдя к мышце, процесс возбуждения должен с помощью медиатора преодолеть нервно-мышечный синапс, что занимает примерно 0,5 мс. Медиатором здесь является ацетилхолин, который содержится в синаптических пузырьках в пресинаптической части синапса. Нервный импульс вызывает перемещение синаптических пузырьков к пресинаптической мембране, их опорожнение и выход медиатора в синаптическую щель. Действие ацетилхолина на постсинаптическую мембрану чрезвычайно кратковременно, после чего он разрушается ацетилхолинзетеразой на уксусную кислоту и холин. По мере расходования запасы ацетилхолина постоянно пополняются путем его синтезирования в пресинаптической мембране. Однако при очень частой и длительной импульсации мотонейрона расход ацетилхолина превышает его пополнение, а также снижается чувствительность постсинаптической мембраны к его действию, в результате чего нарушается проведение возбуждения через нервно-мышечный синапс. Эти процессы лежат в основе периферических механизмов утомления при длительной и тяжелой мышечной работе.

Выделившийся в синаптическую щель медиатор прикрепляется к рецепторам постсинаптической мембраны и вызывает в ней явления деполяризации. Небольшое подпороговое раздражение вызывает лишь местное возбуждение небольшой амплитуды – потенциал концевой пластинки (ПКП).

При достаточной частоте нервных импульсов ПКП достигает порогового значения и на мышечной мембране развивается мышечный потенциал действия. Он (со скоростью 5 м/с) распространяется вдоль по поверхности мышечного волокна и заходит в поперечные трубочки внутрь волокна. Повышая проницаемость клеточных мембран, потенциал действия вызывает выход из цистерн и трубочек саркоплазматического ретикулума ионов Са 2+ , которые проникают в миофибриллы, к центрам связывания этих ионов на молекулах актина.

Под влиянием Са 2+ длинные молекулы тропомиозина проворачиваются вдоль оси и скрываются в желобки между сферическими молекулами актина, открывая участки прикрепления головок миозина к актину. Тем самым между актином и миозином образуются так называемые поперечные мостики. При этом головки миозина совершают гребковые движения, обеспечивая скольжение нитей актина вдоль нитей миозина с обоих концов саркомера к его центру, т. е. механическую реакцию мышечного волокна (рис. 10).

Энергия гребкового движения одного мостика производит перемещение на 1 % длины актиновой нити. Для дальнейшего скольжения сократительных белков друг относительно друга мостики между актином и миозином должны распадаться и вновь образовываться на следующем центре связывания Са 2+ . Такой процесс происходит в результате активации в этот момент молекул миозина. Миозин приобретает свойства фермента АТФазы, который вызывает распад АТФ. Выделившаяся при распаде АТФ энергия приводит к разрушению имеющихся мостиков и образованию в присутствии Са 2+ новых мостиков на следующем участке акт и позой нити. В результате повторения подобных процессов многократного образования и распада мостиков сокращается длина отдельных саркомеров и всего мышечного волокна в целом. Максимальная концентрация кальция в миофибрилле достигается уже через 3 мс после появления потенциала действия в поперечных трубочках, а максимальное напряжение мышечного волокна – через 20 мс.

Рис. 10. Схема электромеханической связи в мышечном волокне.

А – состояние покоя; Б – возбуждение и сокращение; ПД – потенциал действия:

ММ – мембрана мышечного волокна; П – поперечные трубочки; I – продольные трубочки и цистерны с ионами Ca 2+ ; а – тонкие нити актина, м – толстые нити миозина с утолщениями (головками) на концах. Зет-мембранами ограничены саркомеры миофибрилл. Толстые стрелки – распространение потенциала действия при возбуждении волокна и перемещение ионов Са 2+ из цистерн и продольных трубочек в миофибриллы, где они содействуют образованию мостиков между нитями актина и миозина и скольжение этих нитей (сокращение волокна) за счет гребковых движений головок миозина

Весь процесс от появления мышечного потенциала действия до сокращения мышечного волокна называется электромеханической связью (или электромеханическим сопряжением). В результате сокращения мышечного волокна актин и миозин более равномерно распределяются внутри саркомера, и исчезает видимая под микроскопом поперечная исчерченность мышцы.

Расслабление мышечного волокна связано с работой особого механизма – «кальциевого насоса», который обеспечивает откачку ионов Са 2+ из миофибрилл обратно в трубочки саркоплазматического ретикулума. На это также тратится энергия АТФ.

5.3. Одиночное и тетаническое сокращение. Злектромиограмма

При единичном надпороговом раздражении двигательного нерва или самой мышцы возбуждение мышечного волокна сопровождается одиночным сокращением. Эта форма механической реакции состоит из трех фаз: латентного, или скрытого, периода; фазы сокращения; фазы расслабления. Самой короткой фазой является скрытый период, когда в мышце происходит электромеханическая передача. Фаза расслабления обычно в 1,5–2 раза более продолжительна, чем фаза сокращения, а при утомлении затягивается на значительное время.

Рис. 11. Одиночное сокращение, зубчатый и сплошной тетанус камбаловидной мышцы человека

(по: Н.В. Зимкин и др., 1984); верхняя кривая – сокращение мышцы, нижняя – отметка раздражения мышцы, справа указана частота раздражения

Если интервалы между нервными импульсами короче, чем длительность одиночного сокращения, то возникает явление суперпозиции – наложение механических эффектов мышечного волокна друг на друга и наблюдается сложная форма сокращения – тетанус. Различают две формы тетануса – зубчатый тетанус, возникающий при более редком раздражении, когда происходит попадание каждого следующего нервного импульса в фазу расслабления отдельных одиночных сокращений, и сплошной, или гладкий, тетанус, возникающий при более частом раздражении, когда каждый следующий импульс попадает в фазу сокращения (рис. 11). Таким образом (в некоторых границах) между частотой импульсов возбуждения и амплитудой сокращения волокон ДЕ существует определенное соотношение: при небольшой частоте (например, 5–8 имп. в 1 с) возникают одиночные сокращения, при увеличении частоты (15–20 имп. в 1 с) – зубчатый тетанус, при дальнейшем нарастании частоты (25–60 имп. в 1 с) – гладкий тетанус. Одиночное сокращение – более слабое и менее утомительное, чем тетаническое. Зато тетанус обеспечивает в несколько раз более мощное, хотя и кратковременное сокращение мышечного волокна.

Сокращение целой мышцы зависит от формы сокращения отдельных ДЕ и их координации во времени. При обеспечении длительной, но не очень интенсивной работы, отдельные ДЕ сокращаются попеременно (рис. 12), поддерживая общее напряжение мышцы на заданном уровне (например, при беге на длинные и сверхдлинные дистанции). При этом отдельные ДЕ могут развивать как одиночные, так и тетанические сокращения, что зависит от частоты нервных импульсов. Утомление в этом случае развивается медленно, так как, работая по очереди, ДЕ в промежутках между активацией успевают восстанавливаться. Однако для мощного кратковременного усилия (например, поднятия штанги) требуется синхронизация активности отдельных ДЕ, т. е. одновременное возбуждение практически всех ДЕ, что, в свою очередь, требует одновременной активации соответствующих нервных центров и достигается в результате длительной тренировки. При этом осуществляется мощное и весьма утомительное тетаническое сокращение.

Рис. 12. Различные режимы работы двигательных единиц (ДЕ)

Амплитуда сокращения одиночного волокна не зависит от силы надпорогового раздражения (закон «Все или ничего»), В отличие от этого, при нарастании силы надпорогового раздражения сокращение целой мышцы постепенно растет до максимальной амплитуды.

Работа мышцы с небольшой нагрузкой сопровождается редкой частотой нервных импульсов и вовлечением небольшого числа ДЕ. В этих условиях, накладывая отводящие электроды на кожу над мышцей и используя усилительную аппаратуру, можно на экране осциллографа или с применением чернильной записи на бумаге зарегистрировать одиночные потенциалы действия отдельных ДЕ. В случае же значительных напряжений потенциалы действия многих ДЕ. алгебраически суммируются, возникает сложная интегрированная кривая записи электрической активности целой мышцы – электромиограмма (ЭМГ).

Форма ЭМГ отражает характер работы мышцы: при статических усилиях она имеет непрерывный вид, а при динамической работе – вид отдельных пачек импульсов, приуроченных в основном к начальному моменту сокращения мышцы и разделенных периодами «электрического молчания». Особенно хорошо ритмичность появления подобных пачек наблюдается у спортсменов при циклической работе (рис. 13). У маленьких детей и неадаптированных к такой работе лиц четких периодов отдыха не наблюдается, что отражает недостаточное расслабление мышечных волокон работающей мышцы.

Чем больше внешняя нагрузка и сила сокращения мышцы, тем выше амплитуда ее ЭМГ. Это связано с увеличением частоты нервных импульсов, вовлечением большего числа ДЕ в мышце и синхронизацией их активности. Современная многоканальная аппаратура позволяет производить одновременную регистрацию ЭМГ многих мышц на разных каналах. При выполнении спортсменом сложных движений можно видеть на полученных ЭМГ кривых не только характер активности отдельных мышц, но и оценить моменты и порядок их включения или выключения в различные фазы двигательных актов. Записи ЭМГ, полученные в естественных условиях двигательной деятельности, можно передавать к регистрирующей аппаратуре по телефону или радиотелеметрически. Анализ частоты, амплитуды и формы ЭМГ (например, с помощью специальных компьютерных программ) позволяет получить важную информацию об особенностях техники выполняемого спортивного упражнения и степени ее освоения обследуемым спортсменом.

Рис. 13. Электромиограмма мышц-антагонистов при циклической работе

По мере развития утомления при той же величине мышечного усилия амплитуда ЭМГ нарастает. Это связано с тем, что снижение сократительной способности утомленных ДЕ компенсируется нервными центрами вовлечением в работу дополнительных ДЕ, т. е. путем увеличения количества активных мышечных волокон. Кроме того, усиливается синхронизация активности ДЕ, что также повышает амплитуду суммарной ЭМГ.

5.4. монофункциональные основы мышечной силы

Движение является результатом взаимодействия внутренних и внешних сил, развиваемых в опорно-двигательном аппарате, – активных (возникающих при сокращении или напряжении мышцы во время ее возбуждения) и пассивных (упругое напряжение при растяжении мышцы, сопротивление мышцы и ее сухожилия).

Сила мышцы зависит от ряда морфологических и физиологических факторов: количества и свойств мышечных волокон в мышце, исходной длины мышцы, характера нервных импульсов, механических условий действия мышцы на кости скелета.

Сила мышцы является суммой силы отдельных ее мышечных волокон. Подсчитано, что 1 одиночное мышечное волокно икроножной мышцы развивает напряжение 100–200 мг, 1 ДЕ икроножной мышцы человека содержит около 2000 мышечных волокон и развивает напряжение 200–400 г, 1 икроножная мышца содержит около 1000 ДЕ и развивает напряжение 200–400 кг.

Большое значение имеет анатомическое строение мышцы. В параллельно-волокнистых и веретенообразных мышцах (камбаловидная мышца и др.) сила мышц тем больше, чем больше ее анатомический поперечник, т. е. площадь поперечного сечения целой мышцы. В перистых мышцах (двуглавая мышца и др.) физиологический поперечник, т. е. площадь поперечного сечения всех мышечных волокон, гораздо больше, чем ее анатомический поперечник. В такой мышце упаковано значительно больше мышечных волокон и соответственно больше ее сила.

На силу сокращения мышцы влияет ее исходная длина, так как от нее зависит возможное количество поперечных мостиков между актином и миозином. Предполагают, что в каждом цикле присоединения-отсоединения поперечных мостиков расходуется энергия 1 молекулы АТФ на 1 поперечный мостик. Следовательно, чем больше образуется в мышечном волокне актино-миозиновых мостиков, тем выше скорость расщепления АТФ, больше тяга сократительных белков и соответственно больше развиваемая мышцей сила.

Наибольшее количество актино-миозиновых контактов образуется при небольшом растяжении мышцы до некоторой оптимальной длины. При значительном растяжении саркомера нити актина далеко расходятся в стороны и практически не контактируют с расположенным в средней части саркомера миозином. В случае же резкого уменьшения длины саркомера нити актина в центре перекрывают друг друга, препятствуя контактам с миозином и также уменьшая число образуемых мостиков. В связи с этими особенностями взаимодействия сократительных белков наибольшая сила мышцы проявляется при некотором ее предварительном растяжении.

Одной из важнейших характеристик скелетных мышц, влияющих на силу сокращения, является состав (композиция) мышечных волокон. Различают три типа мышечных волокон – медленные неутомляемые (I типа), быстрые неутомляемые или промежуточные (II-а типа) и быстрые утомляемые (II – б типа).

Медленные волокна (I типа), их обозначают также SO – Slow Oxydative (англ. – «медленные окислительные»), – это выносливые (неутомляемые) и легко возбудимые волокна, с богатым кровоснабжением, большим количеством митохондрий, запасов миоглобина и с использованием окислительных процессов энергообразования (аэробные). Их у человека в среднем 50 %. Они легко включаются в работу при малейших напряжениях мышц, очень выносливы, но не обладают достаточной силой. Чаще всего они используются при поддержании ненагрузочной статической работы, например при сохранении позы.

Быстрые утомляемые волокна (II-б типа), или FG – Fast Glicolitic (англ. – «быстрые гликолитические») – используют анаэробные процессы энергообразования (гликолиз). Они менее возбудимы, включаются при больших нагрузках и обеспечивают быстрые и мощные сокращения мышц. Зато эти волокна быстро утомляются. Их примерно 30 %. Волокна промежуточного типа (II-а) – быстрые неутомляемые, окислительные, их около 20 %. В среднем, для разных мышц характерно различное соотношение медленных неутомляемых и быстрых утомляемых волокон. Так, в трехглавой мышце плеча преобладают быстрые волокна (67 %) над медленными (33 %), что обеспечивает скоростно-силовые возможности этой мышцы (рис. 14), а для более медленной и выносливой камбаловидной мышцы характерно наличие 84 % медленных и всего 16 % быстрых волокон (Салтин Б., 1979).

Состав мышечных волокон в одной и той же мышце имеет огромные индивидуальные различия, зависящие от врожденных типологических особенностей человека. К моменту рождения человека его мышцы содержат лишь медленные волокна, но под влиянием нервной регуляции в ходе онтогенеза устанавливается генетически заданное индивидуальное соотношение мышечных волокон разного типа. По мере перехода от зрелого возраста к пожилому число быстрых волокон у человека заметно снижается и соответственно уменьшается мышечная сила. Например, наибольшее количество быстрых волокон в наружной головке четырехглавой мышцы бедра мужчины (около 59–63 %) отмечается в возрасте 20–40 лет, а в возрасте 60–65 лет их число почти на 1/3 меньше (45 %).

Рис. 14. Состав пышечных волокон в разных мышцах (медленные – светло-серым цветом; быстрые – темно-серым)

Количество тех или других мышечных волокон не изменяется в процессе тренировки. Возможно только нарастание толщины (гипертрофия) отдельных волокон, а также некоторое изменение свойств промежуточных волокон. При направленности тренировочного процесса на развитие силы происходит нарастание объема быстрых волокон, что и обеспечивает повышение силы тренируемых мышц.

Характер нервных импульсов изменяет силу сокращения мышц тремя способами:

1) увеличением числа активных ДЕ – это механизм вовлечения или рекрутирования ДЕ (сначала происходит вовлечение медленных и более возбудимых ДЕ, затем – высокопороговых быстрых ДЕ);

2) увеличением частоты нервных импульсов, в результате чего происходит переход от слабых одиночных сокращений к сильным тетаническим сокращениям мышечных волокон;

3) увеличением синхронизации ДЕ, при этом происходит увеличение силы сокращения целой мышцы за счет одновременной тяги всех активных мышечных волокон.

Существенное значение имеют механические условия работы мышцы – точка приложения ее силы и точка приложения сопротивления (поднимаемого груза). Например, при сгибании в локте вес поднимаемого груза может быть порядка 40 кг и более, при этом сила мышц-сгибателей достигает 250 кг, а тяга сухожилий – 500 кг.

Между силой и скоростью сокращения мышцы существует определенное соотношение, имеющее вид гиперболы (соотношение сила – скорость, по А. Хиллу). Чем выше сила, развиваемая мышцей, тем меньше скорость ее сокращения, и наоборот, с нарастанием скорости сокращения падает величина усилия. Наибольшую скорость развивает мышца, работающая без нагрузки. Скорость мышечного сокращения зависит от скорости передвижения поперечных мостиков, т. е. от частоты гребковых движений в единицу времени. В быстрых ДЕ эта частота выше, чем в медленных ДЕ, и соответственно потребляется больше энергии АТФ. Во время сокращения мышечных волокон в 1 с происходит примерно от 5 до 50 циклов прикрепления-отсоединения поперечных мостиков. При этом никаких колебаний силы в целой мышце не ощущается, так как ДЕ работают асинхронно. Лишь при утомлении возникает синхронная работа ДЕ, и в мышцах появляется дрожь (тремор утомления).

Представленный фрагмент произведения размещен по согласованию с распространителем легального контента ООО «ЛитРес» (не более 20% исходного текста). Если вы считаете, что размещение материала нарушает чьи-либо права, то сообщите нам об этом.

источник