Меню Рубрики

Что такое изометрическое сокращение мышцы

Чтобы понять суть метода изометрической гимнастики, предлагаю вам окунуться в интересный мир физиологии мышечного сокращения, то есть узнать, как работают мышцы нашего с вами организма. Проведите простейший опыт: обнажите плечо так, чтобы был виден бицепс, и положите на него другую руку. Начинайте медленно сгибать обнаженную руку в локте – вы почувствуете сокращение бицепса. Вес руки остается одинаковым, поэтому напрягается мышца более-менее равномерно во время движения.

Такое сокращение мышц называется изотоническим(греч. изос – равный).

Этот режим работы приводит к движению – собственно тому, для чего мышца и предназначена. Но заметьте, двигается не только мышца, но и кости, и суставы. Именно они являются слабым звеном, которое изнашивается быстрее всех. Хрящ сустава – это одна из самых уязвимых тканей организма. В нем отсутствуют кровеносные сосуды, поэтому питается хрящ очень медленно за счет диффузии – «пропитывания» питательных веществ из соседних костей, и, к сожалению, по этой причине практически не восстанавливается.

Активные движения, да еще и с нагрузкой, серьезно нагружают суставной хрящ. непомерная работа перегружает суставы, и хрящевая прослойка истончается, «стирается», заставляя кости буквально скрипеть. Артроз – так называется болезнь суставов, связанная со старением суставных хрящей. Каждое движение в таком суставе может причинять боль, поэтому движение ограничивается, а с гимнастикой приходится распрощаться.

Попробуем продолжить наши несложные физиологические опыты. Постарайтесь напрячь бицепс плеча так, чтобы предплечье и плечо оставались без движения. Чувствуете ли вы напряжение мышцы? Безусловно, но одновременно рука неподвижна, движение в суставе отсутствует. Такой режим работы назван изометрическим. Режим, который и сберегает ваши суставы, и тренирует мышечные волокна, оставляя радость движений на долгие годы!

За каждым движением, словно тень, следует утомление и усталость, а желание расслабления и отдыха неизменно приводит к прекращению занятий. Вот и вы после наших экспериментов расслабьте плечо и дайте руке свободно свисать вниз подобно ветке дерева – почувствуйте степень расслабления мышцы и запомните это ощущение. Перейдем к последнему эксперименту.

Начните сгибать локтевой сустав одной руки, а другой пытайтесь удержать ее от движения – это и есть уже известное вам изометрическое напряжение бицепса. Удержите это положение в течение двадцати секунд. Теперь быстро подойдите спиной к стене, положите ладонь работавшей руки на стену пальцами вниз и медленно приседайте, сохраняя руку выпрямленной. Вы чувствуете растяжение бицепса? Да, это сильное и даже немного болезненное, но приятное ощущение.

Растягивайте руку не более 10 секунд. Теперь расслабьте и опустите руку вниз. Уверен, что сейчас вы чувствуете расслабление бицепса гораздо сильнее, чем после обычных сгибаний. Такое состояние получило специальное название — послеизометрическая релаксация, которую вы только что самостоятельно научились выполнять. Думаю, вам становится понятно, что растянуть и расслабить мышцы после изометрического напряжения гораздо более эффективно, чем обычным потягиванием.

Итак, изометрическая гимнастика основана на напряжении мышц БЕЗ ДВИЖЕНИЯ. Она сохраняет суставы, предотвращает изнашивание суставного хряща и прогрессирование артроза. Во многих упражнениях за фазой изометрического сокращения следует фаза растяжения. Это эффективный прием, расслабляющий мышцу, снимающий мышечный спазм и обладающий выраженным обезболивающим эффектом. Вспомните, как приятно потянуться после долгого сидения – изометрическая гимнастика будет и тренировать, и расслаблять целевую мышцу – ту, которую необходимо нагружать именно при вашей патологии или проблеме.

•Изометрическое сокращение мышцы – это ее напряжение без движения в суставе.

•Изометрическая гимнастика, укрепляя мышцы, щадит суставы и хрящи.

•Растяжение мышцы после изометрического напряжения (послеизометрическая релаксация) – это эффективный прием мышечного расслабления и обезболивания.

Совет: Периодически пересаживайтесь на край сидения. Пересаживаясь вперед, вы меняете положение и выполняете небольшую, но физическую работу. Кроме того, когда вы сидите на краю сидения, это заставляет вас поддерживать правильную осанку

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

источник

В зависимости от изменения длины мышечного волокна выде­ляют два типа его сокращения —изометрическое и изотониче­ское. Сокращение мышцы, при котором ее волокна укорачиваются при неизменном напряжении, называется изотоническим. Сокра щение мышцы, при котором ее напряжение возрастает, а длина мышечных волокон остается неизменной, называется изометриче­ским. В естественных условиях сокращения мышц являются сме­шанными — мышца обычно не только укорачивается, но изменяет­ся и ее напряжение. В зависимости от длительности выделяют одиночное и тетаническое сокращения мышцы.

Одиночное сокращение мышцы в эксперименте вызывают одиночным раздражением электрическим током мышцы или нервно­го волокна. В изотоническом режиме одиночное сокращение начи­нается через короткий скрытый (латентный) период, далее следует фаза подъема (фаза укорочения), затемфаза спада (фаза расслабления) (рис. 5.2). Обычно мышца укорачивается на 5-10% исходной длины. Длительность ПД мышечных волокон также варьирует и составляет 5-10 мс с учетом замедления фазы реполяризации в конце ее. Длительность одиночного сокращения , мышечного волокна вариабельна, она во много раз превышает продолжительность ПД. Мышечное волокно подчиняется закону «все или ничего», т.е. отвечает на пороговое и сверхпороговое раз­дражение одинаковым по величине одиночным сокращением. Од­нако сокращение целой мышцы зависит от силы раздражения при непосредственном раздражении мышцы и от числа нервных импуль­сов, поступающих к мышце при раздражении нерва. Пр’и непосредственном раздражении это связано с различной возбуди­мостью мышечных волокон и разным расстоянием их от раздража­ющих электродов. Увеличение силы раздражения ведет к увеличе­нию числа сокращающихся мышечных волокон.

Подобный эффект наблюдается и в естественных условиях -с увеличением числа возбужденных нервных волокон и частоты им­пульсов (к мышце поступает больше нервных импульсов — ПД) уве­личивается число сокращающихся мышечных волокон. При одиноч­ных сокращениях мышца утомляется незначительно.

Тетаническое сокращение это слитное длительное сокра­щение скелетной мышцы. В его основе лежит явление суммации одиночных мышечных сокращений. При нанесении на мышечное волокно или непосредственно на мышцу двух быстро следующих друг за другом раздражений возникающее сокращение имеет боль­шую амплитуду и длительность. При этом нити актина и миозина дополнительно скользят друг относительно друга. Могут вовлекать­ся также в сокращение ранее не сокращавшиеся мышечные волок­на, если первый стимул вызвал у них подпороговую деполяризацию, а второй увеличивает ее до критической величины. Суммация со­кращений при повторном раздражении мышцы или поступлении к ней ПД возникает только в том случае, когда закончен рефрактер­ный период (после исчезновения ПД мышечного волокна).

При поступлении импульсов к мышце во время ее расслабле­ния возникает зубчатый тетанус, во время укорочения — глад­кий тетанус (рис. 5.3). Амплитуда тетануса больше величины максимального одиночного сокращения мышцы. Напряжение, раз­виваемое мышечными волокнами при гладком тетанусе, обычно в 2-4 раза больше, чем при одиночном сокращении, однако мышца быстрее утомляется. Мышечные волокна не успевают восстановить энергетические ресурсы, израсходованные во время сокращения.

Амплитуда гладкого тетануса увеличивается с возрастанием частоты стимуляции нерва. При некоторой час­тоте стимуляции амплитуда гладкого тетануса наибольшая (оптимум частоты раздражения). При чрезмерно частой стимуляции нерва (более 100 имп/с) мышца расслабляется вследствие блока проведения возбуждения в нервно-мышечных синапсах — песси-мум Введенского (пессимум частоты раздражения). Пессимум Введенского можно получить и при прямом, но более частом раз­дражении мышцы (более 200 имп/с) (см. рис. 5.3). Пессимум Вве­денского не является результатом утомления мышцы или истоще­ния медиатора в синапсе, что доказывается фактом возобновления сокращения мышцы сразу же после уменьшения частоты раздра­жения. Торможение развивается в нервно-мышечном синапсе при раздражении нерва.

В естественных условиях мышечные волокна сокращаются в режиме зубчатого тетануса или даже одиночных последовательных сокращений. Однако форма сокращения мышцы в целом напомина­ет гладкий тетанус. Причины этого — асинхронность разрядов мо­тонейронов и асинхронность сократительной реакции отдельных мышечных волокон, вовлечение в сокращение большого их коли­чества, вследствие чего мышца плавно сокращается и плавно рас­слабляется, может длительно находиться в сокращенном состоя­нии за счет чередования сокращений множества мышечных волокон. При этом мышечные волокна каждой двигательной еди­ницы сокращаются синхронно.

источник

Изометрическая нагрузка (она же – нагрузка на статическую выносливость) – один из наиболее недооцененных методов тренировки, который в состоянии помочь преодолеть «плато» при развитии тяжелоатлетов и повысить общую выносливость организма.

Для начала отмечу, что в процессе подготовки к триатлону в качестве силовой программы один из ведущих тренеров по этому направлению – Игорь Леонович из студии персональных тренировок TriFit давал программу в стато-динамическом стиле по методикам Селуянова: ключевое значение имело время работы под нагрузкой – приседания со штангой небольшого веса делаются медленно, упражнение выполняется не на разы, а на время (3 подхода по 30 секунд).

Вот пример такой силовой тренировки:

Стато-динамическая тренировка относится к изометрическому типу нагрузки. Зожник публикует перевод статьи о пользе такого типа тренировок.

Во время тренировки наши мышцы, как правило, сокращаются тремя разными способами (в зависимости от выполняемого движения). При опускании веса (например, во время опускания штанги при выполнении приседаний) или при “разгибании” с нагрузкой происходит эксцентрическое сокращение мышц. Противоположный процесс: при поднятии веса мышцы сжимаются, сокращая расстояние между суставами – это концентрическое сокращение.

Но существует и третий тип сокращения мышц, когда мышцы сокращаются, но не меняют своей длины – изометрическое сокращение. В отличие от стандартной силовой тренировки, когда мышцы последовательно совершают концентрические и эксцентрические сокращения, изометрическая нагрузка выполняется в статическом положении.

Примеры таких упражнений: толкание неподвижного объекта, скажем, стены, или напряжение мышц без движения, например, упражнение “планка”, присед у стены, или удержание нижнего положения при выполнении упражнений, например, приседа. Как правило изометрическая нагрузка использует вес тела (в чем вы убедитесь ниже), однако если ваша подготовка позволяет – можно использовать и дополнительные утяжелители.

Увеличение силы мышц

Благодаря сокращению мышц в статическом положении, длина мышц остается неизменной, спортсмен не выполняет движение по всей амплитуде. Некоторым такой подход покажется малополезным для развития силовых навыков, однако это мнение далеко от истины.

Подумайте, какая нагрузка ляжет на ваши плечи и руки, если как можно дольше удерживать руки в опущенном положении при становой тяге? В реальности во время изометрической тренировки организм оказывается способен использовать практически все двигательные единицы.

Двигательные единицы состоят из двигательных нейронов и волокон скелетной мускулатуры — группы двигательных единиц работают вместе для координации сокращения отдельных мышц. Еще в 1953 году немецкие исследователи Геттингер и Мюллер, изучавшие влияние изометрической нагрузки на силовые качества, пришли к выводу, что изометрической нагрузки продолжительностью 6 секунд в день будет достаточно, чтобы за 10 недель улучшить силовые качества на 5%.

Изометрическая нагрузка помогает спортсменам тяжелоатлетам развить силу, необходимую для выполнения движений, подразумевающих сокращения крупных мышц, а также помогает преодолевать «мертвые точки» в этих движениях.

При выполнении динамических движений — например, приседа со штангой за спиной — мускулы выполняют эксцентрические и концентрические сокращения. При выполнении движения по всей амплитуде прилагается максимальное усилие, однако такое динамическое движение не позволяет сфокусироваться на напряжении мышц на каждом конкретном участке траектории движения.

Выполняя изометрическую работу на напряжение мышц (работа заключается в удержании тела в определенном положении) или изометрическую работу на преодоление (выполнение толчков или давления на неподвижные объекты), можно фокусироваться на определенных этапах движения, которые вызывают затруднения, и с помощью изометрической нагрузки развить силу мышц, отвечающих за «прохождение» данных участков.

Представим, что вы испытываете сложности с выходом из низшего положения при выполнении приседа со штангой за спиной. В этом случае лучшее изометрическое упражнение для вас — взять штангу с весом и принять положение, чуть выше самой низшей точки приседа, стараясь сохранить такое положение как можно дольше. Мускулатура, которая располагается вокруг сустава и несет ответственность за движение под этим углом сгиба сустава, получит достаточную нагрузку, что позволит ей быстрее адаптироваться под поставленные задачи.

Тренер Мэл Сифф в своей книге «Supertraining» пишет:

«Изометрическая нагрузка также позволяет значительно нарастить силу мускулов в диапазоне до 15 градусов с обеих сторон от выбранного угла сгиба сустава. Более того, как и для всех измерений силы, существует специфическая сила или момент для угла сустава для каждого типа мышечного сокращения, так что очень маловероятно, что увеличение силы будет ограничиваться определенным углом сгиба сустава и не проявится где-то еще».

Читайте также:  Название белка для мышцы

Улучшение контроля положения тела

В то время как статическая изометрическая нагрузка помогает улучшить результаты в тяжелой атлетике, в таких сферах как движения, для выполнения которых требуется полный контроль положения тела, она менее результативна. Однако это не значит, что она не может принести пользу.

Спортсмены могут использовать популярные гимнастические стойки (например, стойка на руках или уголок) для достижения тех же уровней мышечной активации, что и при выполнении изометрических упражнений на удержание и толкание неподвижных объектов. Эти упражнения одновременно позволяют улучшить контроль над положением тела, уверенность и активацию мышц корпуса. Для демонстрации работы этих областей вашего организма, просто встаньте на руки возле стены и постарайтесь удержать это положение как можно дольше. Очень скоро все ваше тело начнет трясти, так что вам придется сфокусироваться на напряжении мышц живота, чтобы сохранить положение тела.

Увеличить нагрузку при изометрическом приседе у стены можно, подняв одну ногу.

Повышение гибкости

Отличный побочный эффект изометрической нагрузки — это совершенствование гибкости тела. Как улучшить мобильность бедер при выполнении приседа? Одно из упражнений, которое может вам помочь: простое приседание до нижней точки амплитуды приседа и сохранение этого положения с фокусом на разведении колен и вертикальном положении груди. Вы почувствуете напряжение в паху, четырехглавых мышцах, мышцах задней поверхности бедра и мускулатуре, окружающей тазобедренный сустав. Дело в том, что в таком положении тела мышцы постоянно сокращаются и растягиваются для того, чтобы сохранить нужное положение тела и не дать вам упасть на землю. Вес вашего тела выступает в роли нагрузки, а вы технически выполняете изометрическое упражнение.

Если добавить к этому положению дополнительную нагрузку в виде штанги, получим изометрическую нагрузку на удержание. Сохранение положения в нижней точке приседа с одновременной нагрузкой в виде штанги станет серьезной задачей для ваших бедер, так что, практикуя такую стойку, вы заметите серьезный прогресс в работе бедер при выполнении стандартного приседания. Олимпийские чемпионы в тяжелой атлетике используют изометрическую нагрузку для улучшения гибкости.

Ниже представлены изометрические упражнения, которые можно выполнять дома или в спортивном зале.

Приседания у стены

Найдите ровную стену и присядьте рядом с ней до того момента, пока ваши ноги не согнутся в коленях под углом 90 градусов, а бедра не окажутся параллельно полу. Ваша спина должна располагаться ровно напротив стены. Удерживайте такое положение как можно дольше (через какое-то время вы почувствуете серьезное напряжение в четырехглавых мышцах), выполните 3 подхода.

Изометрические отжимания / выпады

Делайте обычные отжимания или выпады, но с паузой в середине движения: удерживайте это положение 30-60 секунд, затем отдохните и повторите 3-5 раз.

Разгибания бедер

Встаньте лицом к столу или стулу, поднимите правую ногу перед собой, стараясь держать ее как можно прямее, слегка наклоняясь вперед в поясе. Вы можете опираться на стол/стул. Ваша нога должна располагаться параллельно полу. Мышцы задней поверхности бедер, икры и нижняя часть спины должны быть напряжены. Удерживайте данное положение 30-60 секунд, затем повторите для другой ноги.

Вариация этого же упражнения:

Становая тяга

После разминочных подходов на становой тяге накиньте на штангу вес, который превышает ваш максимум для одного повторения. Примите исходное положение для выполнения становой тяги и потяните штангу вверх с максимальным усилием в течение 6-8 секунд. Очень важно сохранять правильное положение и осанку при выполнении этого упражнения.

Присед со штангой

Перед попытками выполнения этого упражнения необходимо хорошо освоить непосредственно сам присед со штангой. Возьмите штангу и накиньте на нее небольшой вес, как только освоите упражнение и почувствуете уверенность – сможете подобрать подходящую нагрузку.

Теперь опуститесь и принимайте необходимые положения тела в ходе выполнения приседа (полный присед, бедра параллельно полу, бедра чуть выше параллельного положения и т.д.), удерживайте каждое положение 5-8 секунд. Для обеспечения безопасности вы можете использовать дополнительные набор держателей, которые устанавливают ту же высоту, которую вы удерживаете. Таким образом, вы можете выполнять повторы, не пытаясь встать или сбрасывать штангу после завершения упражнение, что важно при работе с большим весом.

Подтягивания

Примите положение, которое вызывает у вас наибольшие проблемы при выполнении подтягиваний, и удерживайте данное положение. Если вам сложно проходить последний этап подтягивания, подтянитесь до высоты, когда ваши глаза будут располагаться напротив перекладины. Возможно, вам потребуются ремни, которые помогут принять нужное положение. Удерживайте нужное положение как можно дольше, опускайте руки медленно, чтобы дополнительно нагрузить мышцы. При необходимости повторите.

Автор текста: Вильям Имбо, помощник редактора журнала BoxLife, тренер CrossFit.

источник

Если мышцу стимулировать коротким электрическим импульсом, спустя небольшой латентный период происходит ее сокращение. Такое сокращение называется «одиночное сокращение мышцы». Одиночное мышечное сокращение длится около 10-50 мс, причем оно достигает максимальной силы через 5-30 мс.

Каждое отдельное мышечное волокно подчиняется закону «все или ничего», т. е. при силе раздражения выше порогового уровня происходит полное сокращение с максимальной для данного волокна силой, а ступенчатое повышение силы сокращения по мере увеличения силы раздражения невозможно. Поскольку смешанная мышца состоит из множества волокон с различным уровнем чувствительности к возбуждению, сокращение всей мышцы может быть ступенчатым в зависимости от силы раздражения, при этом при сильных раздражениях происходит активация глубжележащих мышечных волокон.

Однократное электрическое раздражение (рис. 1, вверху) ведет к единичному мышечному сокращению (рис. 1, внизу). Два близко друг за другом следующих раздражения накладываются друг на друга (это называется «суперпозиция», или суммация сокращений), что ведет к более сильному мышечному ответу, близкому к максимальному. Серия часто повторяющихся электрических раздражений вызывает возрастающие по силе мышечные сокращения, в результате чего не происходит должного расслабления мышцы. Если частота электрических импульсов выше частоты слияния, то единичные раздражения сливаются в одно и вызывают тетанус мышцы (тетаническое сокращение) — устойчивое достаточно длительное напряжение сокращенной мышцы.

Выделяют различные функциональные формы мышечных сокращений (рис. 2).

  • При изотоническом сокращении мышца укорачивается, однако ее внутреннее напряжение (тонус!) остается неизменным во всех фазах рабочего цикла. Типичным примером изотонического мышечного сокращения является динамическая мышечная работа сгибателей и разгибателей без существенных изменений внутримышечного напряжения, например подтягивание.
  • При изометрическом сокращении мышечная длина не изменяется, а сила мышцы проявляется в повышении ее напряжения. Типичным примером изометрического сокращения является статическая мышечная активность при поднимании тяжестей (удерживание штанги).
  • Чаще всего наблюдаются комбинированные варианты сокращения мышц. Например, комбинированное сокращение, при котором мышцы сначала сокращаются изометрически, а затем изотонически, как при поднятии тяжести, называют удерживающим сокращением.
  • Установочным (изготовочным) называют сокращение, при котором, наоборот, после начального изотонического сокращения следует изометрическое. Примером является ротационное движение руки с рычагом — затягивание винта с помощью гаечного ключа или отвертки.
  • Различные формы мышечных сокращений выделяют для их описания и систематизации. На самом деле в большинстве динамических спортивных движений происходит как укорочение мышцы, так и повышение напряжения (тонуса) мышц — ауксотонические сокращения.

Использованные здесь термины нетипичны для русской литературы по мышечной активности. В отечественной литературе принято выделять следующие типы сокращений.

  • Концентрическое сокращение — вызывающее укорачивание мышцы и перемещение места прикрепления ее к кости, при этом движение конечности, обеспечиваемое сокращением данной мышцы, направлено против преодолеваемого сопротивления, например силы тяжести.
  • Эксцентрическое сокращение — возникает при удлинении мышцы во время регулирования скорости движения, вызванного другой силой, или в ситуации, когда максимального усилия мышцы не хватает для преодоления противодействующей силы. В результате движение происходит в направлении воздействия внешней силы.
  • Изометрическое сокращение — усилие, противодействующее внешней силе, при котором длина мышцы не изменяется и движения в суставе не происходит.
  • Изокинетическое сокращение — сокращение мышцы с одинаковой скоростью.
  • Баллистическое движение — быстрое движение, включающее: а) концентрическое движение мышц-агонистов в начале движения; б) инерционное движение во время минимальной активности; в) эксцентрическое сокращение для замедления движения.

источник

Типы мышечных сокращений. По способу укорочения мышц различают три типа мышечных сокращений:

1) изотоническое , при котором волокна укорачиваются при постоянной внешней нагрузке, в реальных движениях проявляется редко (так как мышцы укорачиваясь вместе с тем меняют своё напряжение);

2) изометрическоеэто тип активации, при котором мышца развивает напряжение без изменения своей длины . На нём построена так называемая статическая работа двигательного аппарата человека. Например, в режиме изометрического сокращения работают мышцы человека, который подтянулся на перекладине и удерживает своё тело в этом положении;

3) ауксотоническое или анизотоническоеэто режим, при котором мышца развивает напряжение и укорачивается . Именно этот тип мышечных сокращений обеспечивает выполнение двигательных действий человека.

У анизотонического сокращения две разновидности сокращения мышцы: в преодолевающем и уступающем режимах.

В преодолевающем режиме мышца укорачивается в результате сокращения (например, икроножная мышца бегуна укорачивается в фазе отталкивания).

В уступающем режиме мышца растягивается внешней силой (например, икроножная мышца спринтера при взаимодействии ноги с опорой в фазе амортизации).

На рисунке 1 изображена динамика работы мышцы в преодолевающем и уступающем режимах.

Правая часть кривой отображает закономерности преодолевающей работы, при которой возрастание скорости сокращения мышцы вызывает уменьшение силы тяги.

В уступающем режиме наблюдается обратная картина: увеличение скорости растяжения мышцы сопровождается увеличением силы тяги (что является причиной многочисленных травм у спортсменов, например, разрыв ахиллова).

При скорости, равной нулю, мышцы работают в изометрическом режиме.

Для движения звена в суставе под действием мышечных сил важны не сами силы, а создаваемые ими моменты сил , поскольку движение звена – это ни что иное, как вращение относительно оси, проходящей через сустав. Поэтому разновидности работы мышц можно выразить в терминах моментов сил: если отношение момента внутренних сил к моменту внешних рано единице, режим сокращения будет изометрическим, если больше единицы – преодолевающим, если меньше единицы – уступающим. Поддержку сустава можно обеспечить спортивным тейпом .

Групповое взаимодействие мышц. Существует два вида группового взаимодействия мышц: синергизм и антагонизм.

Мышцы-синергисты перемещают звенья тела в одном направлении. Например, в сгибании руки в локтевом суставе участвуют двуглавая мышца плеча, плечевая и плечелучевая мышцы. В результате синергического взаимодействия мышц увеличивается результирующая сила действия.

Мышцы-антагонисты имеют разнонаправленное действие: если одна из них выполняет преодолевающую работу, то другая – уступающую. Мышцы обеспечивают возвратно-вращательные движения звеньев тела, поскольку каждая из них работает только на сокращение; высокую точность двигательных действий, так как звено необходимо не только привести в движение, но и затормозить в нужный момент. Антагонисты состоят из пары: агонист (сгибатель) – антагонист (разгибатель).

Мощность и эффективность мышечного сокращения. По мере увеличения скорости мышечного сокращения сила тяги мышцы, функционирующей в преодолевающем режиме, снижается по гиперболическому закону (см. рис. 1). Известно, что механическая мощность равна произведению силы на скорость (N = F V). Существует сила и скорость, при которых мощность мышечного сокращения наибольшая; этот режим возникает, когда и сила, и скорость составляют примерно 30 % от максимально возможных величин.

Накопление энергии упругой деформации в растянутых мышцах и сухожилиях. Когда сокращению мышц предшествует фаза растяжения, производимые силы, мощность и работа достигают больших величин по сравнению с сокращением без предварительного растяжения. После растяжения скорость сокращения увеличивается за счёт скорости восстановления упругих компонентов мышцы.

Растяжение мышечно-сухожильной системы позволяет также накапливать и использовать энергию упругой деформации. Было подсчитано, что ахиллово сухожилие растягивается на 18 мм во время бега со средней скоростью , при этом накапливается энергия в 42 Дж. Нелинейная зависимость между величиной растяжения и накапливаемой энергией показывает, что при больших растяжениях накапливается больше энергии, чем при малых. Эластичное растяжение внесёт значительный вклад в мышечную деятельность, только если за активным мышечным растяжением немедленно последует преодолевающий режим сокращения мышцы. Более высокая результативность прыжка с подседом по отношению к прыжку из статической позы показывает преимущество предварительного растяжения мышц.

Каждая мышечная клетка состоит прежде всего из мышечных фибрилл (волоконец), которые являются сократительными элементами клетки. Как видно на прилагаемой диаграмме мышечной клетки, мышечные фибриллы представляют собой длинные пряди, состоящие из различных белков. Под электронным микроскопом эти фибриллы оказываются состоящими из чередующихся связок толстых и тонких мышечных нитей. Примечательно, как резко отличаются друг от друга эти мышечные фибриллы. Толстые нити состоят из белка миозина, а так

же из белка актина. Мельчайшие волосовидные отростки между этими мышечными нитями, которые традиционно называются перекрестными мостиками, под воздействием импульса асинхронно прикрепляются к противоположной мышечной нити, сокращаются, отцепляются, вновь прикрепляются, сокращаются, отцепляются и так далее до тех пор, пока актиновая и миозиновая нити не натянутся одна вдоль другой до состояния максимального сокращения. Таким образом, в мгновение ока мышечное волокно сокращается вполовину, от своей длины в состоянии покоя, в результате действия вышеупомянутых перекрестных мостиков, заставляющих актиновую и миозиновую нити скручиваться. Действие сокращения по длине называется концентрическим сокращением. Примером такого сокращения будет сокращение бицепса при подъеме гантели вверх по радиусу с центром в локтевом суставе. Чтобы постепенно опустить гантель вниз, некоторые мышечные волокна «отключаются» (как бы отпускаем педаль газа в вашей машине), а в результате немногочисленные «неотключенные» мышечные волокна, которые остаются в сокращенном состоянии, борются с силой притяжения, уступают в борьбе, и вес опускается. Механика этой операции очень важна в тренировке по поднятию тяжестей. Это отрицательное сокращение, называемое эксцетрическим, длительное время находилось в центре споров и противоречий

Читайте также:  Парни с красивыми мышцами

при его учете в технике тренировок. Так как количество перекрестных мостиков, старающихся сократить мышцу недостаточно, они буквально «продираются» сквозь мостики соединений нити, стараясь вызвать концентрическое сокращение. Однако сцепиться, как следует им не удается, они срываются и повреждаются. Эти действия, очень напоминающие протаскивание щетины одной зубной щетки через другую, сопровождаются сильным трением, и мышечные нити разрушаются. После этого в течение нескольких дней в мышцах наблюдаются сильные болевые ощущения. Хотя отрицательный тренинг, как показывает опыт, дает увеличение силы: сопровождающая его болезненность ощущении и необходимость длительное время отдыхать при такой методике почти сводит на нет эффект от таких тренировок. Легко заметить, что одним из очень важных факторов, задействованных в выработке силы, является наличие того или иного количества мышечных нитей в волокнах. Это может показаться таким же простым,

как усиление одной из команд по перетягиванию каната добавлением нескольких новых участников. Однако есть более важные факторы, определяющие сократительную силу мышцы, нежели простой подсчет мышечных фибрилл или мышечных клеток.

Внутри каждой мышечной клетки имеется множество субклеточных веществ энзимов (ферментов), чья совокупная обязанность — производство энергии для мышечных сокращений. Эффективная деятельность энзимов становится важным фактором увеличения силы. Выясняется, что сокращение высокого напряжения (то есть, высокого сопротивления) вырабатывает такую эффективность, так как оно вызывает увеличение числа фибрильных элементов внутри каждого мышечного волокна.

Однако имеется еще один важный фактор в тренировке по выработке силы. Исследование показывает нам, что важную роль в производстве максимального сокращения крупной мышцы играет нервный импульс. Каждая мышца состоит из моторных единиц. Моторная единица может содержать от одного до сотни мышечных волокон, связанных с нею. Таким образом, один нейрон, его длинный аксон (нервное волокно),

все мелкие отростки и волокна, к каждому из которых прикрепляется «веточка», представляет собой одну моторную единицу. Каждая моторная единица стимулируется к сокращению согласно ее порога возбудимости. То есть все моторные единицы, чей порог возбудимости равен или ниже десяти милливольт, сократятся под воздействием импульса в десять милливольт, генерируемого центральной нервной системой (мозгом) или через рефлекторное действие (которое имеет место на уровне спинного мозга). Именно активизация деятельности мозга — это та область, которая представляет особый интерес для атлетов, так как моментальной генерации максимального нервного импульса можно «обучаться» в весьма широких пределах. Чем сильнее нервный импульс, тем многочисленнее сокращающиеся моторные единицы. Это, конечно же, связано с силой сокращения мышц, того или иного атлета.

Степень обучаемости силе будет подробнее рассмотрена в последующих разделах книги. 3десь же достаточно будет сказать, что можно научиться не только стимуляции как можно 6ольшего числа моторных единиц, но также и отодвиганию защитного барьера, мешающего этому. Этот барьер устанавливается действием определенных проприорецепторов, находящихся в мышцах и сухожилиях. Эти проприорецепторы действуют как защитный механизм, обеспечивающий безопасность действия силы сокращения и предохраняющий мышцы и сухожилия от травм. Имеются веские доказательства, что этот защитный механизм вступает в действие слишком рано, и что его можно отодвинуть путем выполнения различных тренировочных приемов.

Сила также определяется отношением между красными и белыми мышечными волокнами, задействованными в сокращении, о котором говорилось выше. Белые мышечные волокна видятся белыми при исследовании микроскопом из-за недостатка двух компонентов — миоглобина и капилляров. Миоглобин является красным пигментом в клетке, который отвечает за обеспечение достаточным количеством кислорода, с тем, чтобы митохондрия могла эффективно выполнять свою функцию. Митохондрии — мельчайшие органеллы, рассредоточенные по всей мышце, выполняют окислительную функцию клетки. Капилляры, конечно же, поставляют обогащенную кислородом кровь к клетке и через них удаляются продукты метаболического распада, происходящего во время упражнения. Так как в белых волокнах мало капилляров, то волокна обладают относительно низким уровнем выносливости — они не предназначены для эффективного усвоения кислорода и быстро устают. Таким образом, белые волокна мышц имеют еще одно название — волокна с низким уровнем окисления. Однако белые мышечные волокна обладают гораздо более высоким уровнем энзимного равновесия для производства сильного сокращения, нежели красные волокна. Они также обладают, более надежной и обширной нервной связью, что позволяет им совершать более частые «подергивания» в секунду. В то время как белые мышечные волокна обладают способностью непрерывно сжиматься и разжиматься 100 раз в секунду, красные волокна при максимальной стимуляции обычно совершают подобные подергивания меньше 20 раз в секунду. Чем больше мышца подергивается в секунду, тем сильнее сокращения. К. тому же имеются исследования, указывающие на то, что белые волокна обладают более высокой способностью увеличиваться в размере, чем красные. Это свойство ассоциируется с увеличением числа мышечных фибрилл внутри мышечного волокна.

Таким образом, мы затронули базовые моменты, касающиеся природы силы. Сила зависит: 1) от расположения мышечных волокон (то есть веретенообразного или перьевого); 2) числа моторных единиц, подвергающихся одновременной стимуляции; 3) присутствия должной концентрации энзимов в клетке; 4) относительного положения защитного барьера, определяемого чувствительностью проприорецепторов мышцы и сухожилия; 5) соотношения белых и красных мышечных волокон; 6) действия скелетно-мышечного рычага; и 7) координации действия синергистов и стабилизаторов.

Обладание относительно длинным силовым плечом в сравнении с плечом сопротивления, занятым в движении скелетно-мышечного рычага, относится к наследственным характеристикам. Обратите внимание, например, на иллюстрацию, приводимую здесь. Можно увидеть,

что чем ниже по предплечью закреплен бицепс, тем длиннее силовое плечо и тем мощнее будет сила, действующая на сопротивление на конце рычага. Этот пример можно перенести на совокупные телесные движения и на действие одиночного рычага, такого, как рука. При приседании, жиме и мертвой тяге относительная длина рычагов будет иметь важное значение в определении величины поднимаемого веса, а, следовательно, будет очень важным фактором в выборе правильной соревновательной техники трех движений. Подробнее об этом будет сказано в последующей главе.

Согласование действия малых синергистов («вспомогательных» мышц) и стабилизаторов (мышц, которые сокращаются статически, чтобы поддерживать конечность или часть тела в сильной позиции) с действием основного двигателя (наиболее важной в данном движении тела мышцы) также имеет очень большое значение при рассмотрении общей величины силы, которую может проявить атлет при воздействии на такой внешний объект, как штанга. Определение мышц — основных двигателей, синергистов и стабилизаторов является основой выбора упражнений для любого атлета. Выбор упражнений должен определяться путем внимательного анализа техники атлета, определения слабых мест и приложения нагрузки нужной величины.

Выделяют различные функциональные формы мышечных сокращений

  • При изотоническом сокращении мышца укорачивается, однако ее внутреннее напряжение (тонус!) остается неизменным во всех фазах рабочего цикла. Типичным примером изотонического мышечного сокращения является динамическая мышечная работа сгибателей и разгибателей без существенных изменений внутримышечного напряжения, например подтягивание.
  • При изометрическом сокращении мышечная длина не изменяется, а сила мышцы проявляется в повышении ее напряжения. Типичным примером изометрического сокращения является статическая мышечная активность при поднимании тяжестей (удерживание штанги).
  • Чаще всего наблюдаются комбинированные варианты сокращения мышц. Например, комбинированное сокращение, при котором мышцы сначала сокращаются изометрически, а затем изотонически, как при поднятии тяжести, называют удерживающим сокращением .
  • Установочным (изготовочным) называют сокращение, при котором, наоборот, после начального изотонического сокращения следует изометрическое. Примером является ротационное движение руки с рычагом — затягивание винта с помощью гаечного ключа или отвертки.
  • Различные формы мышечных сокращений выделяют для их описания и систематизации. На самом деле в большинстве динамических спортивных движений происходит как укорочение мышцы, так и повышение напряжения (тонуса) мышц — ауксотонические сокращения .

Использованные здесь термины нетипичны для русской литературы по мышечной активности. В отечественной литературе принято выделять следующие типы сокращений.

  • Концентрическое сокращение — вызывающее укорачивание мышцы и перемещение места прикрепления ее к кости, при этом движение конечности, обеспечиваемое сокращением данной мышцы, направлено против преодолеваемого сопротивления, например силы тяжести.
  • Эксцентрическое сокращение — возникает при удлинении мышцы во время регулирования скорости движения, вызванного другой силой, или в ситуации, когда максимального усилия мышцы не хватает для преодоления противодействующей силы. В результате движение происходит в направлении воздействия внешней силы.
  • Изометрическое сокращение — усилие, противодействующее внешней силе, при котором длина мышцы не изменяется и движения в суставе не происходит.
  • Изокинетическое сокращение — сокращение мышцы с одинаковой скоростью.
  • Баллистическое движение — быстрое движение, включающее: а) концентрическое движение мышц-агонистов в начале движения; б) инерционное движение во время минимальной активности; в) эксцентрическое сокращение для замедления движения.

рис. 2.4. Электрическое раздражение и мышечный ответ. Сверху показаны электрические импульсы, снизу — ответ мышцы

Если стимулировать коротким электрическим импульсом, спустя небольшой латентный период происходит ее . Такое сокращение называется «одиночное сокращение мышцы». Одиночное мышечное сокращение длится около 10-50 мс, причем оно достигает максимальной силы через 5-30 мс.

Каждое отдельное мышечное волокно подчиняется закону «все или ничего», т. е. при силе раздражения выше порогового уровня происходит полное сокращение с максимальной для данного волокна силой, а ступенчатое повышение силы сокращения по мере увеличения силы раздражения невозможно. Поскольку смешанная мышца состоит из множества волокон с различным уровнем чувствительности к возбуждению, сокращение всей мышцы может быть ступенчатым в зависимости от силы раздражения, при этом при сильных раздражениях происходит активация глубжележащих мышечных волокон.

Однократное электрическое раздражение (рис. 2.4, вверху) ведет к единичному мышечному сокращению (рис. 2.4, внизу). Два близко друг за другом следующих раздражения накладываются друг на друга (это называется «суперпозиция», или суммация сокращений), что ведет к более сильному мышечному ответу, близкому к максимальному. Серия часто повторяющихся электрических раздражений вызывает возрастающие по силе мышечные сокращения, в результате чего не происходит должного расслабления мышцы. Если частота электрических импульсов выше частоты слияния, то единичные раздражения сливаются в одно и вызывают тетанус мышцы (тетаническое сокращение) — устойчивое достаточно длительное напряжение сокращенной мышцы.

Рис. 2.5. Формы мышечных сокращений. Слева схематически представлено укорочение саркомеров, в середине — изменения силы и длины, справа — пример сокращений

Выделяют различные функциональные формы мышечных сокращений (рис. 2.5).

  • При изотоническом сокращении мышца укорачивается, однако ее внутреннее напряжение (тонус!) остается неизменным во всех фазах рабочего цикла. Типичным примером изотонического мышечного сокращения является динамическая мышечная работа сгибателей и разгибателей без существенных изменений внутримышечного напряжения, например подтягивание.
  • При изометрическом сокращении мышечная длина не изменяется, а сила мышцы проявляется в повышении ее напряжения. Типичным примером изометрического сокращения является статическая мышечная активность при поднимании тяжестей (удерживание штанги).
  • Чаще всего наблюдаются комбинированные варианты сокращения мышц. Например, комбинированное сокращение, при котором мышцы сначала сокращаются изометрически, а затем изотонически, как при поднятии тяжести, называют удерживающим сокращением .
  • Установочным (изготовочным) называют сокращение, при котором, наоборот, после начального изотонического сокращения следует изометрическое. Примером является ротационное движение руки с рычагом — затягивание винта с помощью гаечного ключа или отвертки.
  • Различные формы мышечных сокращений выделяют для их описания и систематизации. На самом деле в большинстве динамических спортивных движений происходит как укорочение мышцы, так и повышение напряжения (тонуса) мышц — ауксотонические сокращения .

Использованные здесь термины нетипичны для русской литературы по мышечной активности. В отечественной литературе принято выделять следующие типы сокращений.

  • Концентрическое сокращение — вызывающее укорачивание мышцы и перемещение места прикрепления ее к кости, при этом движение конечности, обеспечиваемое сокращением данной мышцы, направлено против преодолеваемого сопротивления, например силы тяжести.
  • Эксцентрическое сокращение — возникает при удлинении мышцы во время регулирования скорости движения, вызванного другой силой, или в ситуации, когда максимального усилия мышцы не хватает для преодоления противодействующей силы. В результате движение происходит в направлении воздействия внешней силы.
  • Изометрическое сокращение — усилие, противодействующее внешней силе, при котором длина мышцы не изменяется и движения в суставе не происходит.
  • Изокинетическое сокращение — сокращение мышцы с одинаковой скоростью.
  • Баллистическое движение — быстрое движение, включающее: а) концентрическое движение мышц-агонистов в начале движения; б) инерционное движение во время минимальной активности; в) эксцентрическое сокращение для замедления движения.
Читайте также:  Опускание нижней челюсти осуществляется мышцами

рис. 2.6 Схема образования поперечных связей — молекулярной основы сокращения саркомера

Укорочение мышцы происходит за счет укорочения образующих ее саркомеров, которые, в свою очередь, укорачиваются за счет скольжения относительно друг друга актиновых и миозиновых филаментов (а не укорочения самих белков). Теория скольжения филаментов была предложена учеными Huxley и Hanson (Huxley, 1974; рис. 2.6). (В 1954 г. две группы исследователей — X. Хаксли с Дж. Хэнсон и А. Хаксли с Р. Нидергерке — сформулировали теорию, объясняющую мышечное сокращение скольжением нитей. Независимо друг от друга они обнаружили, что длина диска А оставалась постоянной в расслабленном и укороченном саркомере. Это позволило предположить, что есть два набора нитей — актиновые и миозиновые, причем одни входят в промежутки между другими, и при изменении длины саркомера эти нити каким-то образом скользят друг по другу. Сейчас эта гипотеза принята почти всеми.)

Актин и миозин — два сократительных белка, которые способны вступать в химическое взаимодействие, приводящее к изменению их взаимного расположения в мышечной клетке. При этом цепочка миозина прикрепляется к актиновой нити с помощью целого ряда особых «головок», каждая из которых сидит на длинной пружинистой «шее». Когда происходит сцепление между миозиновой головкой и актиновой нитью, конформация комплекса этих двух белков изменяется, миозиновые цепочки продвигаются между актиновыми нитями и мышца в целом укорачивается (сокращается). Однако, чтобы химическая связь между головкой миозина и активной нитью образовалась, необходимо подготовить этот процесс, поскольку в спокойном (расслабленном) состоянии мышцы активные зоны белка актина заняты другим белком — тропохмиозином, который не позволяет актину вступить во взаимодействие с миозином. Именно для того, чтобы убрать тропомиозиновый «чехол» с актиновой нити, требуется быстрое выливание ионов кальция из цистерн саркоплазматического ретикулума, что происходит в результате прохождения через мембрану мышечной клетки потенциала действия. Кальций изменяет конформацию молекулы тро-помиозина, в результате чего активные зоны молекулы актина открываются для присоединения головок миозина. Само это присоединение осуществляется с помощью так называемых водородных мостиков, которые очень прочно связывают две белковые молекулы — актин и миозин — и способны в таком связанном виде находиться очень долго.

Для отсоединения миозиновой головки от актина необходимо затратить энергию аденозинтрифосфа-та (АТФ), при этом миозин выступает в роли АТФазы (фермента, расщепляющего АТФ). Расщепление АТФ на аденозиндифосфат (АДФ) и неорганический фосфат (Ф) высвобождает энергию, разрушает связь между актином и миозином и возвращает головку миозина в исходное положение. В дальнейшем между актином и миозином могут снова образовываться поперечные связи.

При отсутствии АТФ актин-миозиновые связи не разрушаются. Это и является причиной трупного окоченения (rigor mortis) после смерти, т. к. останавливается выработка АТФ в организме — АТФ предотвращает мышечную ригидность.

Даже при мышечных сокращениях без видимого укорочения (изометрические сокращения, см. выше) активируется цикл формирования поперечных связей, мышца потребляет АТФ и выделяет тепло. Головка миозина многократно присоединяется на одно и то же место связывания актина, и вся система миофиламентов остается неподвижной.

Внимание : Сократительные элементы мышц актин и миозин сами по себе не способны к укорочению. Мышечное укорочение является следствием взаимного скольжения миофиламентов относительно друг друга (механизм скольжения филаментов).

Как же образование поперечных связей (водородных мостиков) переходит в движение? Одиночный саркомер за один цикл укорачивается приблизительно на 5-10 нм, т.е. примерно на 1 % своей общей длины. За счет быстрого повторения цикла поперечных связей возможно укорочение на 0,4 мкм, или 20% своей длины. Поскольку каждая миофибрилла состоит из множества саркомеров и во всех них одновременно (но не синхронно) образуются поперечные связи, суммарно их работа приводит к видимому укорочению всей мышцы. Передача силы этого укорочения происходит через Z-линии миофибрилл, а также концы сухожилий, прикрепленных к костям, в результате чего и возникает движение в суставах, через которые мышцы реализуют перемещение в пространстве частей тела или продвижение всего тела.

Рис. 2.7. Зависимость силы сокращений от длины саркомера

Наибольшую силу сокращений мышечные волокна развивают при длине 2-2,2 мкм. При сильном растяжении или укорочении саркомеров сила сокращений снижается (рис. 2.7). Эту зависимость можно объяснить механизмом скольжения филаментов: при указанной длине саркомеров наложение миозиновых и актиновых волокон оптимально; при большем укорочении миофиламенты перекрываются слишком сильно, а при растяжении наложение миофиламентов недостаточно для развития достаточной силы сокращений.

рис. 2.9 Влияние предварительного растяжения на силу сокращения мышцы. Предварительное растяжение повышает напряжение мышцы. Результирующая кривая, описывающая взаимоотношения длины мышцы и силы ее сокращения при воздействии активного и пассивного растяжения, демонстрирует более высокое изометрическое напряжение, чем в покое

Важным фактором, влияющим на силу сокращений, является величина растяжения мышцы. Тяга за конец мышцы и натяжение мышечных волокон называются пассивным растяжением. Мышца обладает эластическими свойствами, однако в отличие от стальной пружины зависимость напряжения от растяжения не линейна, а образует дугообразную кривую. С увеличением растяжения повышается и напряжение мышцы, но до определенного максимума. Кривая, описывающая эти взаимоотношения, называется кривой растяжения в покое .

Данный физиологический механизм объясняется эластическими элементами мышцы — эластичностью сарколеммы и соединительной ткани, располагающимися параллельно сократительным мышечным волокнам.

Также при растяжении изменяется и наложение друг на друга миофиламентов, однако это не оказывает влияния на кривую растяжения, т. к. в покое не образуются поперечные связи между актином и миозином. Предварительное растяжение (пассивное растяжение) суммируется с силой изометрических сокращений (активная сила сокращений).

Выделяют три режимы мышечного сокращения:

Изотонический режим мышечного сокращения характеризуется преимущественным изменением длины мышечного волокна, без существенного изменения напряжения. Указанный режим мышечного сокращения наблюдается, например, при поднятии легких и средних по массе грузов.

Изометрический режим мышечного сокращения характеризуется преимущественным изменением мышечного напряжения, без существенного изменения длины. Примером может служить изменения состояния мышц при попытке человека сдвинуть с места предмет большой массы (например, при попытке сдвинуть с места стену в комнате).

Смешанный (ауксометрический) тип мышечного сокращения, наиболее реальный, наиболее часто встречающийся вариант. Содержит в себе компоненты первого и второго вариантов в разных соотношениях в зависимости от реальных условий окружающей среды.

Выделяют три виды мышечного сокращения:

Одиночное мышечное сокращение;

Тетаническое мышечное сокращение (тетанус);

Тоническое мышечное сокращение.

Кроме того, тетаническое мышечное сокращение делят на зубчатый и гладкий тетанус.

Одиночное мышечное сокращение возникает в условиях действия на мышцу пороговых или надпороговых электрических стимулов, межимпульсный интервал которых равен или больше длительности одиночного мышечного сокращения. В одиночном мышечном сокращении выделяют три временных отрезка: латентный период, фазу укорочения и фазу расслабления (см. рис. 3).

Рис. 3 Одиночное мышечное сокращение и его характеристики.

ЛП – латентный период, ФУ – фаза укорочения, ФР – фаза расслабле-ния

Тетаническое мышечное сокращение (тетанус) возникает в условиях действия на скелетную мышцу порогового или надпорогового электрического раздражителя, межимпульсный интервал которого мень- ше длительности одиночного мышечного сокращения. В зависимости от длительности межстимульных интервалов электрического раздражителя при его воздействии может возникнуть либо зубчатый, либо гладкий тетанус. Если межимпульсный интервал электрического раздражителя меньше длительности одиночного мышечного сокращения, но больше или равен сумме латентного периода и фазы укорочения, возникает зубчатый тетанус. Указанное условие выполняется при повышении частоты импульсного электрического раздражителя в определенном диапазоне.

Если же длительность межимпульсного интервала электрического раздражителя меньше суммы латентного периода и фазы укорочения возникает гладкий тетанус. При этом амплитуда гладкого тетануса больше амплитуды и одиночного мышечного сокращения и зубчатого тетанического сокращения. При дальнейшем уменьшении межимпульсного интервала электрического раздражителя, а следовательно при увеличении частоты, амплитуда тетанических сокращений возрастает (см. рис. 4).

Рис. 4 Зависимость формы и амплитуды тетанических сокращений от частоты раздражителя. – начало действия раздражителя, — оконча-ние действия разражителя.

Однако, указанная закономерность не носит абсолютного характера: при определенном значении частоты вместо ожидаемого повышения амплитуды гладкого тетатнуса отмечается феномен ее снижения (см. рис. 5). Указанный феномен был впервые обнаружен Российским ученым Н.Е.Введенским и был назван пессимумом. В основе пессимальных явлений по мнению Н.Е.Введенского лежит механизм торможения.

Рис. 5. Зависимость амплитуды гладкого тетануса от частоты раздражителя. Обозначения те же, что и на рисунке 5.

Виды и режимы мышечного сокращения . Выделяют одиночные и тетанические виды сокращения мышц.

1. Одиночное сокращение мышцы – это сокращение, которое возникает при действии на мышцу одиночного электрического или нервного импульса. На кривой одиночного сокращения выделяют три основных фазы: 1. латентный период – время нанесения раздражения до начала сокращения. В этот период возникает возбуждение мышечных волокон и его распространение вдоль мембраны. Продолжительность варьирует до 10 мс; 2. фаза укорочения (или развитие напряжения) – около 50мс; 3. фаза расслабления — около 60 мс.

2. Тетаническое сокращение – это длительное укорочение мышцы, возникающее под действием ритмического раздражения. В его основе лежит суммация одиночных сокращений. При тетаническом сокращении амплитуда больше, чем при одиночном сокращении, так как повторные потенциалы действия возникают прежде, чем саркоплазматический ретикулум сможет удалить ранее высвобожденный кальций, поэтому уровень последнего в гиалоплазме повышается, активное состояние продлевается, увеличивается количество работающих мостиков и, как результат, усиливается сила сокращения. Для возникновения тетануса необходимо, чтобы интервал между стимулами был больше рефрактерного периода, но короче всей длительности сократительного ответа. Тетаническое сокращения имеет два вида: зубчатый тетанус и гладкий. Если повторить раздражение в фазу расслабления, то получится зубчатыйтетанус , если же в фазу укорочения – то гладкий . При некоторой достаточно высокой частоте раздражения нерва амплитуда гладкого тетануса становится наибольшей. Такой гладкий тетанус называется оптимумом . Для развития оптимума необходимо, чтобы повторные раздражители поступали к мышце после завершения периода рефрактерности, вызванного предыдущим раздражителем. Если повышать дальше частоту раздражения, то наступает состояние, которое называется пессимумом Введенского – формируется блок проведения возбуждения в нервно-мышечном синапсе и мышца вместо того, чтобы продолжать возбуждаться, расслабляется, сколько бы мы её не раздражали. В естественных условиях ввиду асинхронности работы мотонейронов сокращение мышцы напоминает гладкий тетанус.

В зависимости от условий (величины) нагрузки), при которых происходит мышечное сокращение, различают три его основных режима:

1. Изотонический режим – это сокращение мышцы, при котором её волокна укорачиваются, но напряжение остается постоянным. В реальных условиях чисто изотоническое сокращение отсутствует.

2. Изометрический режим – сокращение мышцы, при котором её длина не изменяется, но развиваемое ею напряжение возрастает. Например, поднятие груза, который больше силы мышцы.

3. Ауксотонический режим – это сокращение мышцы, при котором одновременно изменяется длина и напряжение. Этот режим характерен для натуральных двигательных актов.

Сила мышцы или общая сила мышцы , определяется максимальным напряжением в ньютонах, которое она может развить. Удельная сила мышцы – отношение общей силы в ньютонах к физиологическому поперечному сечению мышцы (Н/см 2). С помощью динамометров можно измерить «кистевую», «становую» силу, силу сгибателей и т.д. Сила мышцы зависит от

1. Анатомического строения – если волокна мышцы расположены под углом, то её сила больше (перистые мышцы).

2. Объема растяжения – при умеренном растяжении сократительный эффект мышцы увеличивается, при сильном – уменьшается.

3. Силы стимула : одиночное мышечное волокно реагирует на раздражение по правилу «все или ничего». Сокращение целой мышцы зависит от силы стимуляции до тех пор, пока не будут вовлечены в процесс все волокна мышцы. Затем мышца перестает выдавать увеличение амплитуды сокращения.

4. Удельная сила мышцы зависит от входящих в её состав белых и красных волокон . Чем больше быстрых (белых) волокон, тем выше удельная сила.

Δ Работа мышцы и утомление . В механике работа определяется как произведение силы, приложенной к телу, на расстояние его перемещения под действием этой силы: А=F*L (Дж). При мышечной работе у человека со временем развивается утомление, сила мышечных сокращений постепенно уменьшается, и в конце концов наступает момент, когда человек уже не в состоянии продолжать работу. Скорость развития утомления стоит в зависимости от ритма работы и величины груза. Причиной утомления является накопление калия в области трубочек, накопления молочной кислоты и расхода энергетического материала. Наибольшей бывает работа при некотором среднем, оптимальном для данного человека ритме работы и среднем, оптимальном грузе (правило средних нагрузок).

источник