Меню Рубрики

Эластичность мышцы это способность

Место в рейтинге авторов: вне конкурса (стать автором)
Дата: 2016-01-20 Просмотры: 42 358 Оценка: 4.8

Думаю, что большинство из вас замечало, что объём мышц, это не единственный фактор, от которого зависит их сила. Например, часто такое бывает, что слегка крепкий парень поднимает большие веса, чем какой-нибудь огромный гамадрил. И я уверен, что многие из вас видели подобную картину в залах. Отсюда можно сделать вывод, что на силу мышц оказывает влияние множество факторов. Но что это за факторы, и можно ли как-нибудь на них повлиять? Сейчас вы всё узнаете.

Тут всё понятно. Чем больше орган, чем он больше гипертрофирован (цирроз печени – исключение )) ), тем лучше справляется со своей функцией. У мышц различают 2 типа гипертрофии:

  • Миофибриллярная
  • Саркоплазматическая

Если быть точным, то увеличение мышц в объёме, это саркоплазматическая гипертрофия. То есть мышцы увеличиваются за счёт большего количества саркоплазмы. При чисто саркоплазматической гипертрофии сила мышц практически не растёт. Однако, в чистом виде такая гипертрофия не встречается (как и миофибриллярная). Поэтому, при саркоплазматической гипертрофии отчасти наблюдается и миофибриллярная гипертрофия. А вот она-то и увеличивает силу мышц. То есть, можно сказать, что сила мышц коррелирует в той или иной степени с их объёмом. Поэтому, если вы тренируетесь исключительно на объём, а не на силу, то сила всё равно вырастет вместе с объёмом.

Имеется в виду, как много двигательных нейронов подходят к той или иной мышце. Все знают, что мышцы сокращаются под действием сигнала мозга. Этот сигнал идёт по двигательным нервам (мотонейронам) к мышечным волокнам, заставляя их сокращаться. Чем больше мотонейронов подходит к мышце, тем больше двигательных единиц можно задействовать. К примеру, у новичков рекрутируется только 70% — 80% мышечных волокон. А у профи этот показатель подходит к 100%.

Можно ли как-то повлиять на иннервацию? Можно. Просто тренируйтесь. Со временем под действием нагрузок иннервация мышц станет лучше. То есть мотонейроны оплетут ваши мышцы более плотной сетью.

Очень важный фактор. Дело в том, что организм, при росте тех или иных параметров, когда натыкается на слабое звено, прекращает рост этих параметров. В нашем случае это означает, что сила мышц не будет расти больше, чем сможет выдержать сухожилие. Если же под действием каких-нибудь психотропных веществ заставить сократиться мышцы сильнее, то сухожилие просто оторвётся от кости. Поэтому, неосознанно организм сдерживает рост силы мышц, если эта сила приближается к прочности сухожилий.

Можно ли влиять на этот фактор? Отчасти. Во многом толщина сухожилий закладывается генетически и в детстве. Когда вы уже взрослый, то с помощью тренировок можно усилить сухожилия, но уже довольно незначительно.

Думаю, многие знают, что у нас есть так называемые быстрые (белые) и медленные (красные) мышечные волокна. Не стоит это понимать буквально. Различия между ними весьма условны. Просто красные волокна в силу того, что в них больше митохондрий и лучше кровоснабжение больше подходят для работы не на силу, а на выносливость. Быстрые же волокна (белые) больше подходят для взрывной кратковременной работы. Соотношение этих волокон у разных групп мышц разное. Поэтому одни мышцы (например — голень) славятся своей выносливостью, а другие (грудь) – силой. Также с возрастом количество быстрых волокон снижается, а медленных – увеличивается. Просто происходит трансформация одних волокон в другие.

Можно ли как-то повлиять на этот фактор? Нет, нельзя. Соотношение тех или иных волокон заложено генетически. Вот почему одни с рождения лучше приспособлены для силовых видов спорта, а другие – для аэробных. Вы можете только с помощью тренинга целенаправленно тренировать тот или иной тип волокон. Да и то, это тоже условно.

Все знают, что мышцы работают на сокращение и растяжение. И чем сильнее эта разница между растяжением и сокращением, тем большую силу смогут развить мышцы. Тут действует закон резинового жгута. Чем сильнее его растянуть, тем с большей силой он сожмётся обратно. Логично предположить, что чем сильнее эластичность мышц, тем сильнее они смогут растягиваться, а значит – сильнее смогут сокращаться. Это даже больше не из области физиологии, а из области биомеханики.

На рисунке показано 2 графика. Левый график, это икроножная мышца, а правый – это её сухожилие. Как видите, при большем растяжении мышца показывает большую силу.

Можно ли как то повлиять на этот фактор? Можно. Регулярно растягивайтесь и используйте упражнения на растяжку.

Проще всего будет объяснить вам на примере бицепса. Как видно из рисунка, от места крепления бицухи до локтевого сустава, есть определённое расстояние. А теперь вспоминаем школьную физику и закон рычага. Чем ближе точка приложения (место крепления мышцы) к оси вращения (сустав), тем больше сил придётся приложить для совершения какого-либо действия. То есть, если мы оторвём сухожилие от кости и пришьём его хотя бы на пару миллиметров дальше от локтевого сустава, то сила бицухи вырастет очень существенно. Как вы понимаете, этот закон рычага применим ко всем мышцам, так как все наши мышцы работают по этому закону.

Можно ли как-то на это повлиять? Нет, никак нельзя. Люди рождаются с разными местами крепления мышц. Разницы эти незначительные и не превышают 1 – 2 миллиметра. Но они незначительные, если мерить их линейкой. А для силы даже доли миллиметров играют большую роль.

При одном и том же объёме мышцы могут иметь разное количество мышечных волокон. Количество этих волокон закладывается ещё в утробе матери и оно не меняется в течение всей жизни (правда есть исследования, что под действием гормона роста волокна могут делиться, но мы в этой статье не рассматриваем фармакологию). Да, оно примерно у всех одинаковое. Но это примерно. Тот, кто родился с большим количеством волокон, сможет показать большую силу при прочих равных условиях, так как больше количество волокон автоматически ведёт за собой лучшую иннервацию и больше сократительных элементов.

Ну, думаю, что тут всё понятно. Возьмём человека и попросим его прожать максимальный вес, который он может. А потом возьмём того же самого человека, приставим к его виску пистолет и скажем, что если он сейчас не пожмёт на 10 кг больше, чем он только что пожал, то мы его пристрелим. И, о чудо! Сила возрастает! ))

Тут всё довольно просто. Мышцы сокращаются с силой прямо пропорциональной силе сигнала из мозга, который к ним приходит по мотонейронам. Сильнее сигнал — сильнее сокращение. А чем сильнее вы возбуждены, тем сильнее сигнал мозг способен послать. Именно поэтому спортсмены (особенно лифтёры) колотят себя и кричат перед выходом на помост. Лично я так тоже делал на заре своей спортивной карьеры. Но потом понял, что высший пилотаж, это когда ты выходишь на помост абсолютно спокойным и показываешь при этом максимальный результат. Наверное, это приходит с годами.

Возьмём двоих чуваков, телосложение у которых на глаз примерно одинаковое. Но первый чувак имеет больше мышечных волокон, больший процент белых волокон, дальше место крепления мышц, лучше иннервацию, толще сухожилия и лучше эластичность мышц. Визуально вы это никак не увидите, то по силе этот первый будет превосходить второго не на 10 – 20%, а на 100% — 200%! Конечно, я взял крайние случаи, но все эти факторы в совокупности очень сильно влияют на силу мышц. Причём на 3 из 8 факторов вы никак не сможете повлиять. А ещё на один можете повлиять несущественно.

К чему я всё это? К тому, что далеко не все люди генетически предрасположены к выдающимся силовым показателям. И ваш покорный слуга относится именно к таким людям. Да, я смог достичь неплохих силовых показателей, о которых многие только мечтают, но мне пришлось заплатить за это разорванными менисками, грыжами и артрозами.

Надеюсь, теперь вы поняли, почему два вроде одинаковых человека с одинаковым стажем тренировок могут демонстрировать совершенно разные силовые показатели. Поэтому, помните, все люди разные и изначально все родились с разными физическими возможностями. Одному подходит больше тяжёлая атлетика, другому марафонский бег, а третьему – шахматы. Удачи!

Антон Южаков — МСМК по жиму лёжа и автор сайта youiron.ru

«Не все люди генетически предрасположены к выдающимся силовым показателям» — сделал вывод автор статьи Тимко Илья. Но я позволю себе не согласиться с мнение автора. Так как считаю, что на 99% все зависит от самого человека и на 1% от его «генетики или таланта».

Действительно кому-то от природы дано больше, кому-то меньше. Есть люди, у которых большее количество быстрых (белых) мышечных волокон, у других наоборот – медленные (красные). Но, большая часть мышечных волокон – промежуточные. Промежуточные мышечные волокна при тренировках приобретают признаки как быстрых, так и медленных. Они не могут полностью перестроиться, но по сути это и не нужно. Поэтому среди профессиональных спортсменов соотношение между мышечными волокнами практически одинаковое.

Объем мышц увеличивается у всех людей, независимо от генетики, просто у одних быстрее, у других более медленно, зависит это от гормонов, питания и тренировочного процесса. Если кому-то больше «дано» — у них это займет меньше времени и сил.

Иннервация мышечных волокон напрямую зависит от частоты и силы возбуждения мышцы, простыми словами – чем чаще вы напрягаете мышцу (тренировкой) тем лучше она иннервируется, так что этот процесс прекрасно также подвержен тренировке.

С сухожильями ситуация точно такая же как и с мышцами, они прекрасно гипертрофируются, просто этот процесс крайне медленный, обычно занимает в 2 раза больше времени, чем гипертрофия мышц. Поэтому так часто бывают травмы у молодых «химиков», у которых мышцы растут быстро, а сухожилья за ними не успевают.

Количество мышечных волокон – это очень важный фактор, если учесть, что мышечные клетки неподвержены гиперплазии (делению). Но, по большому счету – пренебречь, и аргумент в том, что одно мышечного волокно может увеличиться в 6 раз. Про это не раз говорил профессор Селуянов.

Единственное, что действительно влияет на «дано или талант к силовым показателям» — длина костей и места прикрепления мышц. Но, это в теории и даже по логике – правда, а вот на практике есть очень большое количество людей, которые просто по всем показателям не должны поднимать, но они поднимают и очень много, поэтому в моем понимании самым важным фактором является – психоэмоциональное возбуждение.

Вы сможете поднять любые веса – все ограничения у вас в голове, не ищите оправданий: «у меня руки длинные, тяжело жать». Ищите возможности: «зато у меня мышцы эластичные, буду становиться в мост и набирать мышечную массу».

Кстати, вы можете заказать себе индивидуальный комплекс упражнений от Тимко Ильи — автора этой статьи и этого сайта.

Нашли ошибку в статье? Выделите её мышкой и нажмите Ctrl + Enter. И мы её исправим!

источник

1. Что такое ткань? Какие типы тканей характерны для организма человека? Определите ткани на рисунке 1. Укажите особенности строения, свойства и местоположение ткани А. Охарактеризуйте строение, свойства и функции ткани Б. На рисунке В показаны три ткани, принадлежащие одному типу. Какая особенность в строении позволяет объединить эти ткани в одну группу? Укажите функции этих тканей в организме.

Ткань – это система клеток и внеклеточных структур, объединенных единством происхождения, строения и функций.

Ткани делятся на 4 типа с определенными функциональными особенностями.- эпителиальная – соединительная — мышечная — нервная

А – Эпителиальная: слой клеток, выстилающий поверхность и полости тела, а также слизистые оболочки внутренних органов, пищевого тракта, дыхательной системы, мочеполовые пути. Кроме того, образует большинство желёз организма. Функции: обмен веществ; защитная; секреция; всасывание; выделение. В зависимости от кол-ва клеточных слоев и формы различают: многослойный(кожа, пищевод); однослойный; железистый (железы). Много межклеточного вещества. На рисунке многослойный эпителий.

Б –Мышечная : это вид ткани, который осуществляет двигательные процессы в организме человека и животных (движение крови по кровяным сосудам, передвижении пищи при пищеварении) при помощи специальных сократительных структур – миофибрилл. На рисунке гладкая мышечная ткань. Существуют два типа мышечной ткани: гладкая ( неисчерченная); поперечнополосатая скелетная ( исчерченная); сердечная поперечнополосатая (исчерченная). Расположение в организме — гладкая мускулатура: кишечник, мочевой пузырь, кровеносные сосуды, мочеточники, матка, семявыносящий проток. Поперечнополосатая скелетная: язык, глотка, верхний отдел пищевода, наружный сфинктер прямой кишки. Сердечная поперечнополосатая: только в сердце.

В. — Соединительная: хрящевая, костная, по свойствам соединительная ткань объединяет значительную группу тканей: собственно соединительные ткани (рыхлая волокнистая, плотная волокнистая – неоформленная и оформленная), ткани которые имеют особые свойства ( жировая, ретикулярная), скелетные твердые (костная и хрящевая) и жидкие (кровь, лимфа). Эта ткань состоит из множества клеток и межклеточного вещества, На рисунке по порядку – рыхлая волокнистая — Относительно клеток, межклеточного вещества больше, включает коллагеновые, эластические и ретикулярные волокна. Хрящевая — прочная, окружена надхрящницей, где идет формирование новых клеток. Выделяют гиалиновые хрящи, эластические и волокнистые. Костная — состоит из остеобластов, между которыми лежат кровеносные сосуды. Межклеточное пространство заполнено минеральными соединениями и в

Охарактеризуйте основные этапы процесса биосинтеза белка в эукариотической клетке.

Биосинтез белка – это создание молекул белка на основе информации о последовательности аминокислот в его первичной структуре, заключенной в структуре ДНК.

Схе­ма­тич­но про­цесс био­син­те­за можно пред­ста­вить сле­ду­ю­щим об­ра­зом: ДНК —> Ин­фор­ма­ци­он­ная РНК —> белок. Дан­ные, по­лу­чен­ные с по­мо­щью раз­лич­ных экс­пе­ри­мен­тов, по­ка­за­ли, что био­син­тез белка со­сто­ит из двух эта­пов: 1​ тран­скрип­ция, 2​ транс­ля­ция.

Тран­скрип­ци­ей на­зы­ва­ют ме­ха­низм, с по­мо­щью ко­то­ро­го нук­лео­тид­ная по­сле­до­ва­тель­ность ДНК пе­ре­пи­сы­ва­ет­ся в ком­пле­мен­тар­ную по­сле­до­ва­тель­ность в виде мо­ле­ку­лы ин­фор­ма­ци­он­ной РНК. Или же про­цесс син­те­за ин­фор­ма­ци­он­ной РНК в ко­то­рой в ка­че­стве мат­ри­цы, ис­поль­зу­ет­ся одна из цепей мо­ле­ку­лы ДНК. То есть, тран­скрип­ция — это пе­ре­пи­сы­ва­ние ге­не­ти­че­ской ин­фор­ма­ции на ин­фор­ма­ци­он­ную РНК.

Как же осу­ществ­ля­ет­ся про­цесс тран­скрип­ции? Спе­ци­аль­ный фер­мент на­хо­дит ген и рас­кру­чи­ва­ет уча­сток двой­ной спи­ра­ли ДНК. Фер­мент пе­ре­ме­ща­ет­ся вдоль цепи ДНК и стро­ит цепь ин­фор­ма­ци­он­ной РНК в со­от­вет­ствии с прин­ци­пом ком­пле­мен­тар­но­сти. По мере дви­же­ния фер­мен­та рас­ту­щая цепь РНК мат­ри­цы от­хо­дит от мо­ле­ку­лы, а двой­ная цепь ДНК вос­ста­нав­ли­ва­ет­ся. Когда фер­мент до­сти­га­ет конца ко­пи­ро­ва­ния участ­ка, то есть до­хо­дит до участ­ка, на­зы­ва­е­мо­го стоп-ко­до­ном, мо­ле­ку­ла РНК от­де­ля­ет­ся от мат­ри­цы, то есть от мо­ле­ку­лы ДНК. Таким об­ра­зом, тран­скрип­ция — это пер­вый этап био­син­те­за белка. На этом этапе про­ис­хо­дит счи­ты­ва­ние ин­фор­ма­ции путем син­те­за ин­фор­ма­ци­он­ной РНК.

Вто­рой этап био­син­те­за белка — транс­ля­ция. Во время транс­ля­ции нук­лео­тид­ные по­сле­до­ва­тель­но­сти ин­фор­ма­ци­он­ной РНК пе­ре­во­дят­ся в по­сле­до­ва­тель­ность ами­но­кис­лот в мо­ле­ку­ле по­ли­пеп­тид­ной цепи. Этот про­цесс идет в ци­то­плаз­ме на ри­бо­со­мах. Об­ра­зо­вав­ши­е­ся ин­фор­ма­ци­он­ные РНК вы­хо­дят из ядра через поры и от­прав­ля­ют­ся к ри­бо­со­мам. Ри­бо­со­мы — уни­каль­ный сбо­роч­ный ап­па­рат. Ри­бо­со­ма сколь­зит по РНК и вы­стра­и­ва­ет из опре­де­лен­ных ами­но­кис­лот длин­ную по­ли­мер­ную цепь белка. Ами­но­кис­ло­ты до­став­ля­ют­ся к ри­бо­со­мам с по­мо­щью транс­порт­ных РНК. Для каж­дой ами­но­кис­ло­ты тре­бу­ет­ся своя транс­порт­ная РНК, со­от­вет­ству­ю­щая опре­де­лен­но­му три­пле­ту ин­фор­ма­ци­он­ной РНК (ко­до­ну) в мо­ле­ку­ле транс­порт­ной РНК, ко­то­рая имеет форму три­лист­ни­ка. У нее есть уча­сток, к ко­то­рой при­со­еди­ня­ет­ся ами­но­кис­ло­та и дру­гой три­плет­ный ан­ти­ко­дон, ко­то­рый свя­зы­ва­ет­­ся с ком­пле­мен­тар­ным ко­до­ном в мо­ле­ку­ле ин­фор­ма­ци­он­ной РНК.­ Биосин­тез белка со­сто­ит из двух эта­пов: тран­скрип­ция (об­ра­зо­ва­ние ин­фор­ма­ци­он­ной РНК по мат­ри­це ДНК, про­те­ка­ет в ядре клет­ке) и транс­ля­ция (эта ста­дия про­хо­дит в ци­то­плаз­ме клет­ки на ри­бо­со­мах).

1. Охарактеризуйте физические свойства скелетных мышц. Почему появляется болезненное состояние мышц после их работы без предварительной тренировки?

Физические свойства скелетных мышц.

1. Растяжимость – способность мышцы изменять свою длину под действием растягивающей её силы.

2. Эластичность – способность мышцы принимать свою первоначальную длину после прекращения действия растягивающей или деформирующей силы. Живая мышца обладает малой, но совершенной эластичностью: уже небольшая сила способна вызвать относительно большое удлинение мышцы, а возвращение её к первоначальным размерам является полным. Эти свойства очень важны для осуществления нормальных функций скелетных мышц.

3. Сила мышцы. Она определяется максимальным грузом, который мышца в состоянии поднять. Для сравнения силы различных мышц определяют их удельную силу – максимальный груз, который мышца в состоянии поднять, делят на число квадратных сантиметров её физиологического поперечного сечения.

4. Способность мышцы совершать работу. Работа мышцы определяется произведением величины поднятого груза на высоту подъёма. Работа мышцы постепенно увеличивается с увеличением груза, но до определённого предела, после которого увеличение груза приводит к уменьшению работы, т.к. снижается высота подъёма груза. Следовательно, максимальная работа мышцей производится при средних величинах нагрузок (закон средних нагрузок).

Боль сопровождает разрушение мышечной структуры. Физические упражнения смещают миофибриллы мышечных волокон, происходит распад митохондрий, а это приводит к увеличению количества лейкоцитов в крови. Явление свойственно травмам, воспалениям и инфекциям. При нагрузках, которые относятся к силовым, в мышцах накапливается большое количество молочной кислоты. Это один из побочных эффектов интенсивной тренировки. Такой процесс вызывает у спортсменов неприятные ощущения тяжести и ноющей боли. Вещество полностью выводится из организма за сутки, поэтому желательно тренироваться не каждый день, а 3-4 раза в неделю. Это даст возможность мышцам отдохнуть и восстановиться.

2. Охарактеризуйте структурно-функциональную организацию животной клетки. Для описания можете использовать приведенную схему строения животной клетки (рисунок 1).

Кле́тка — структурно-функциональная элементарная единица строения и жизнедеятельности всех организмов.

Мембрана(6) состоит из двух слоёв, которые отделяют содержимое от внешней среды. По своей структуре она эластична, поэтому клетки могут иметь разнообразную форму;

цитоплазма (12) находится внутри клеточной мембраны. Это вязкая жидкость, которая постоянно двигается. За счёт движения цитоплазмы внутри клетки протекают различные химические процессы и обмен веществ.

Ядро ( 2) – имеет большие размеры, по сравнению с растениями. Располагается в центре, внутри него находится ядерный сок, ядрышко и хромосомы; внутри ядра находится генетический код, который передаётся из поколения в поколение. Именно ядро регулирует работу других органелл клетки; наследственность и изменчивость

Митохондрии ( 5) состоят из множества складок – крист; энергетическими станциями организма являются митохондрии. Именно здесь образуется вещество АТФ, при расщеплении которого выделяется большое количество энергии.

Гранулярная эндоплазматическая сеть (9) имеет множество каналов с рибосомами, синтез белка, по ним питательные вещества поступают в аппарат Гольджи;

Гладкаяэндоплазматическая сеть (10) имеет множество каналов, синтез углеводов и липидов.

комплекс трубочек, именуемый аппаратом Гольджи(4), накапливает питательные вещества;

лизосомы (7) — пузырьки с ферментами, регулируют количество углеродов и других питательных веществ; лизосомы расщепляют ненужные жиры и углеводы, а также вредные вещества;
рибосомы (13) расположены вокруг эндоплазматической сети. Их наличие делает сеть шероховатой, гладкая поверхность ЭПС свидетельствует об отсутствии рибосом. Синтез белка. Состоит из двух субъединиц, немебранная органелла.

центриоли( 1) – особые микротрубочки, которые отсутствуют у растений, образуют клеточный центр – образование веретена деления.

Цитоскелет (11) – состоит и з белковых трубочек и нитей. Опора и движение.

Ядрышко (3) – плотное тельце ядра, образование р-РНК

Дата добавления: 2019-03-09 ; просмотров: 288 ; ЗАКАЗАТЬ РАБОТУ

источник

У человека различают три вида мышц:

• поперечно-полосатые скелетные мышцы;

• поперечно-полосатая сердечная мышца;

• гладкие мышцы внутренних органов, кожи, сосудов.

Мышцы обладают физическими и физиологическими свойствами. Рассмотрим те свойства, которые характерны для скилетных мышц.

Физические свойства скелетных мышц.

1. Растяжимость — способность мышцы изменять свою длину под действием растягивающей ее силы.

2. Эластичность — способность мышцы принимать свою первоначальную длину после прекращения действия растягивающей или деформирующей силы. Живая мышца обладает малой, но совершенной эластичностью: уже небольшая сила способна вызвать относительно большое удлинение мышцы, а возвращение ее к первоначальным размерам является полным. Эти свойства очень важны для осуществления нормальных функций скелетных мышц.

3. Сила мышцы. Она определяется максимальным грузом, который мышца в состоянии поднять. Для сравнения силы различных мышц определяют их удельную силу — максимальный груз, который мышца в состоянии поднять, делят на число квадратных сантиметров ее физиологического поперечного сечения.

4. Способность мышцы совершать работу. Работа мышцы определяется произведением величины поднятого груза на высоту подъема. Работа мышцы постепенно увеличивается с увеличением груза, но до определенного предела, после которого увеличение груза приводит к уменьшению работы, т. к. снижается высота подъема груза. Следовательно, максимальная работа мышцей производится при средних величинах нагрузок (закон средних нагрузок).

Физиологические свойства мышц.

Возбудимость — способность приходить в состояние возбуждения при действии раздражителей.

Проводимость — способность проводить возбуждение.

Сократимость — способность мышцы изменять свою длину или напряжение в ответ на действие раздражителя.

Лабильность — лабильность мышцы равна 200-300 Гц.

При непосредственном раздражении мышцы (прямое раздражение) или опосредовано через иннервирующий ее двигательный нерв (непрямое раздражение) одиночным стимулом возникает одиночное мышечное сокращение, в котором выделяют три фазы:

латентный период — время от начала действия раздражителя до начала ответной реакции;

фаза сокращения (фаза укорочения);

В естественных условиях к скелетной мышце из ЦНС поступают не одиночные импульсы, а серия импульсов, следующих друг за другом с определенными интервалами, на которую мышца отвечает длительным сокращением. Такое длительное сокращение мышцы, возникающее в ответ на ритмическое раздражение получило название тетанического сокращения или тетануса. Различают два вида тетануса: зубчатый и гладкий.

Если каждый последующий импульс возбуждения поступает к мышце в тот период, когда она находится в фазе укорочения, то возникает гладкий тетанус, а если в фазу расслабления — зубчатый тетанус (рис. 5).

Рис. 5. Различные виды тетануса при повышении частоты раздражения. I — одиночные сокращения; II-III — зубчатый тетанус; VI — гладкий (сплошной) тетанус

Амплитуда тетанического сокращения превышает амплитуду одиночного мышечного сокращения. Исходя из этого Гельмгольц объяснил процесс тетанического сокращения простой суперпозицией, т. е. простой суммацией амплитуды одного мышечного сокращения с амплитудой другого. Однако в дальнейшем было показано, что при тетанусе имеет место не простое сложение двух механических эффектов, т. к. эта сумма может быть то большей, то меньшей. Н. Е. Введенский объяснил это явление с точки зрения состояния возбудимости мышцы, введя понятие об оптимуме и пессимуме частоты раздражения.

Оптимальной называется такая частота раздражения, при которой каждое последующее раздражение осуществляется в фазу повышенной возбудимости. Тетанус при этом будет максимальным по амплитуде — оптимальным.

Пессимальной называется такая частота раздражения, при которой каждое последующее раздражение осуществляется в фазу пониженной возбудимости. Тетанус при этом будет минимальным по амплитуде — пессимальным.

Режимы мышечных сокращений. Различают изотонический, изометрический и смешанный режимы сокращения мышц.

При изотоническом сокращении мышцы происходит изменение ее длины, а напряжение остается постоянным. Такое сокращение происходит в том случае, когда мышца не перемещает груз. В естественных условиях близкими к изотоническому типу сокращений являются сокращения мышц языка.

При изометрическом сокращении длина мышечных волокон остается постоянной, меняется напряжение мышцы. Такое сокращение мышцы можно получить при попытке поднять непосильный груз.

В целом организме сокращения мышц никогда не бывают чисто изотоническим или изометрическим, они всегда имеют смешанный характер, т. е. происходит изменение и длины, и напряжения мышцы. Такой режим сокращения называется ауксотоническим если преобладает напряжение мышцы, или ауксометрическим если преобладает укорочение.

Механизм мышечного сокращения. Мышцы состоят из мышечных волокон, которые состоят из множества тонких нитей — миофибрилл, расположенных продольно. Каждая миофибрилла состоит из протофибрилл — нитей сократительных белков актина и миозина. Перегородки, называемые 2-пластинами, разделяют миофибриллы и, следовательно, мышечное волокно на участки — саркомеры. В саркомере наблюдают правильно чередующиеся поперечные светлые и темные полосы. Эта поперечная исчерченность миофибрилл обусловлена определенным расположением нитей актина и миозина. В центральной части каждого саркомера свободно расположены толстые нити миозина. На обоих концах саркомера находятся тонкие нити актина, прикрепленные к Z-пластинам. Нити миозина выглядят в световом микроскопе как светлая полоска (Н-зона) в темном диске, который дает двойное лучепреломление, т. к. содержит нити миозина и актина и называется анизотропным или А-диском. По обестороны от А-диска находятся участки, которые содержат только тонкие нити актина и кажутся светлыми, т. к. они обладают одним лучепреломлением и называются изотропными или j-дисками. По их середине проходит темная линия — Z-мембрана. Именно благодаря такому периодическому чередованию светлых и темных дисков сердечная и скелетная мышцы выглядят исчерченными (поперечно-полосатыми) (рис. 6).

Рис. 6. Электронномикроскопическая картина миофибриллы (схематизировано)(А). Взаимное расположение толстых (миозиновых) и тонких (актиновых) нитей в расслабленной (Б) и сокращенной (В) миофибрилле.

В состоянии покоя концы толстых и тонких: нитей лишь незначительно перекрываются на уровне А-диска. В соответствии с теорией скользящих нитей при сокращении тонкие актиновые нити скользят вдоль толстых миозиновых нитей, двигаясь между ними к середине саркомера. Сами актиновые и миозиновые нити своей длины не изменяют.

Механизм скольжения нитей. Миозиновые нити имеют поперечные мостики (выступы) с головками, которые отходят от нити биполярно. Актиновая нить состоит из двух закрученных одна вокруг другой цепочек (подобно скрученным ниткам бус) молекул актина. На нитях актина расположены молекулы тропонина, а в желобках между двумя нитями актина лежат нити тропомиозина. Молекулы тропомиозина в покое располагаются так, что предотвращают прикрепление поперечных мостиков миозина к актиновым нитям.

Во многих местах участки поверхностной мембраны мышечной клетки углубляются в виде трубочек внутрь волокна, перпендикулярно его продольной оси, образуя систему поперечных трубочек (Т-систему). Параллельно миофибриллам и перпендикулярно поперечным трубочкам расположена система продольных трубочек (альфа-система). Пузырьки на концах этих трубочек — терминальные цистерны — подходят очень близко к поперечным трубочкам, образуя совместно с ними так называемые триады. В этих пузырьках сосредоточено основное количество внутриклеточного кальция.

В состоянии покоя миозиновый мостик заряжен энергией (миозин фосфорилирован), но он не может соединиться с нитью актина, так как между ними находится система из нитей тропомиозина и глобул тропонина. При возбуждении ПД быстро распространяется по мембранам поперечной системы внутрь клетки и вызывает высвобождение ионов кальция из альфа-системы. С появлением ионов кальция в присутствии АТФ происходит изменение пространственного положения тропонина, в результате чего отодвигается нить тропомиозина и открываются участки актина, присоединяющие ми-озиновые головки. Соединение головки фосфорилированного миозина с актином приводит к изменению положения мостика (его «сгибанию»), в результате конформации этой части миозиновой молекулы, и перемещению нити актина на один шаг (на один «гребок») к середине саркомера. Затем происходит отсоединение мостика от актина. Ритмические прикрепления и отсоединения головок миозина позволяют «грести» или тянуть актиновую нить к середине саркомера.

При отсутствии повторного возбуждения ионы кальция закачиваются кальциевым насосом из протофибриллярного пространства в систему саркоплазматического ретикулума. Это приводит к снижению концентрации ионов кальция и отсоединению его от тропонина. Вследствие чего тропомиозин возвращается на прежнее место и снова блокирует активные центры актина. Вместе с тем, происходит фосфорилирование миозина за счет АТФ, который не только заряжает системы для дальнейшей работы, но и способствует временному разобщению нитей. Удлинение (расслабление) мышцы после ее сокращения является процессом пассивным, поскольку актиновые и миозиновые нити легко скользят в обратном направлении под влиянием сил упругости мышечных волокон и мышцы, а также силы растяжения мышц антагонистов.

Гладкие мышцы. Гладкие мышцы, формирующие мышечные слои стенок желудка, кишечника, мочеточников, бронхов, кровеносных сосудов и других полых внутренних органов, построены из веретенообразных одноядерных мышечных клеток. Отдельные клетки в гладких мышцах функционально связаны между собой низкоомны-ми электрическими контактами — нексусами. За счет этих контактов потенциалы действия и медленные волны деполяризации беспрепятственно распространяются с одного мышечного волокна на другое. Поэтому несмотря на то, что двигательные нервные окончания расположены на небольшом числе мышечных волокон, вследствие беспрепятственного распространения возбуждения с одного волокна на другое в реакцию вовлекается вся мышца. Следовательно, гладкие мышцы представляют собой не морфологический, а функциональный синцитий.

Особенностью гладких мышц является их способность осуществлять относительно медленные движения и длительные тонические сокращения. Медленные, имеющие ритмический характер, сокращения гладких мышц желудка, кишечника, мочеточников и других органов обеспечивают перемещение содержимого этих органов. Длительные тонические сокращения гладких мышц особенно хорошо выражены в сфинктерах полых органов, которые препятствуют выходу содержимого этих органов.

Гладкие мышцы стенок кровеносных сосудов, особенно артерий и артериол, также находятся в состоянии постоянного тонического сокращения. Изменение тонуса мышц стенок артериальных сосудов влияет на величину их просвета и, следовательно, на уровень кровяного давления и кровоснабжения органов.

Важным свойством гладких мышц является их пластичность, т. е. способность сохранять приданную им при растяжении длину. Скелетная мышца в норме почти не обладает пластичностью. Эти различия хорошо наблюдать при медленном растяжении гладкой и скелетной мышцы. При удалении растягивающего груза скелетная мышца быстро укорачивается, а гладкая остается растянутой. Высокая пластичность гладких мышц имеет большое значение для нормального функционирования полых органов. Благодаря высокой пластичности гладкая мышца может быть полностью расслаблена как в укороченном, так и в растянутом состоянии. Так, например, пластичность мышц мочевого пузыря по мере его наполнения предотвращает избыточное повышение давления внутри его.

Сильное и резкое растяжение гладких мышц вызывает их сокращение. Последнее обусловлено нарастающей при растяжении деполяризацией клеток, обусловливающих автоматию гладкой мышцы. Сокращение, индуцируемое растяжением, играет важную роль в авторегуляции тонуса кровеносных сосудов, а также обеспечивает непроизвольное (автоматическое) опорожнение переполненного мочевого пузыря в тех случаях, когда нервная регуляция отсутствует в результате повреждения спинного мозга.

В гладких мышцах одиночное сокращение продолжается несколько секунд. Тетаническое сокращение возникает при низкой частоте слияния одиночных сокращений и низкой частоте сопровождающих его ПД.

В отличие от скелетной мышцы гладкая мышца кишки, мочеточника, желудка и матки развивает спонтанные тетанообразные сокращения в условиях ее изоляции и денервации, и даже после блокады нейронов интрамуральных ганглиев. В этом случае они возникают не в результате передачи нервных импульсов с нерва, а вследствие активности клеток, обладающих автоматией, т. е. пейсмекерных клеток. Последние идентичны по структуре другим мышечным клеткам, но отличаются по электрофизиологическим свойствам. В этих клетках возникают препотенциалы или пейсмекерные потенциалы, депо-ляризующие мембрану до критического уровня. Вследствие входа, главным образом, ионов кальция мембрана деполяризуется до изо-электрического уровня, а затем поляризуется с обратным знаком (до + 20 мВ) . Реверсия потенциала длится в течении нескольких секунд. За реполяризацией следует новый препотенциал, который вызывает еще один потенциал действия.

Вегетативная нервная система и ее медиаторы оказывают на спонтанную активность пейсмекеров модулирующие влияния. При нанесении ацетил холина на препарат мышцы толстой кишки пейсмекерные клетки деполяризуются до околопорогового уровня и ча-стота ПД возрастает. Инициируемые ими сокращения сливаются, образуется почти гладкий тетанус. Чем выше частота ПД, тем сильнее суммированное сокращение. Нанесение на этот препарат норадрена-лина гиперполяризует мембрану и таким образом снижает частоту ПД и величину тонуса.

Возбуждение гладкомышечных клеток вызывает либо увеличение входа ионов кальция через мембрану клетки, либо высвобождение ионов кальция из внутриклеточных хранилищ. В результате повышения концентрации ионов кальция в саркоплазме активируются сократительные структуры. Так же как сердечная и скелетная мышца, гладкая мышца всегда пассивно расслабляется, если концентрация ионов кальция очень мала. Однако расслабление гладких мышц происходит более медленно, т. к. замедлено удаление ионов кальция.

источник

Если функции скелетной системы заключаются в поддержании веса тела и передаче усилий от одной части тела к другой посредством костей и связок в пределах подвижности суставов, то задача мышечной системы состоит в создании этих усилий и перемещении костей. Мышцы генерируют движение, суставы определяют его границы, соединительные ткани передают его от одной ткани к другой, кости совершают движение, а нервы организуют и координируют весь этот процесс.

Мышцы находятся в постоянном взаимодействии друг с другом. Ни одна мышца не работает поодиночке, без поддержки со стороны других мышц. Действия одной из них тут же отражаются на действиях другой независимо от того, находятся они рядом или на значительном расстоянии друг от друга.

Долгое время мышцы рассматривались чрезмерно упрощенно, и на этой основе сформировался ряд неправильных представлений, заключающихся, в частности, в следующем:

  • мышцы работают независимо друг от друга;
  • в любом теле одни и те же мышцы всегда выполняют одну и ту же работу;
  • чем выше тонус мышцы, тем лучше она работает;
  • мышцы всегда взаимодействуют друг с другом одинаково;
  • для совершения каждого движения имеется строго определенный набор мышц.

Чтобы понять, в чем ошибочность подобных взглядов, необходимо обратиться к анатомическим основам.

Проделайте следующий опыт: лягте на спину и вытяните руки в стороны ладонями вверх. Ноги можете согнуть в коленях или выпрямить. Полежите так некоторое время, чтобы привыкнуть к позе, а затем начните сгибать и разгибать пальцы рук.

Вы чувствуете, как активизируются при этом мышцы предплечья? А выше локтя? Чувствуете ли вы работу мышц плечевого пояса, верхней части спины и вдоль позвоночника? А что насчет челюстных мышц? Можете ли вы проследить активность мышц вплоть до стоп?

Если вам кажется, что в каком-то месте мышцы неактивны, можете ли вы точно указать, в каком именно? Не пытаетесь ли вы сдерживать свои мышцы? Можете ли вы расслабить их до такой степени, чтобы движение ощущалось во всем теле?

Мышца представляет собой сложный орган, состоящий из мышечной, нервной и соединительной ткани (в частности, кровеносных сосудов) (см. рис. 4.1). Мышечная ткань, сокращаясь, обладает способностью производить движения. Соединительная ткань передает эти движения другим частям тела, к которым прикреплена мышца, — костям, органам или коже. Нервы дают мышце команду активизироваться, указывая при этом продолжительность и силу сокращения, а капилляры снабжают ее необходимыми питательными веществами.

Выделяют три типа мышечной ткани: скелетная, сердечная и гладкая.

Скелетные мышцы, как правило, соединены с костями и производят движения в суставах. В этом типе ткани перемежаются светлые и темные волокна, придающие им полосатую окраску. Управление мышцами осуществляет соматическая нервная система, которая может подавать команды как повинуясь сознанию, так и непроизвольно. Сердечная ткань имеет схожую со скелетной тканью полосатую структуру, но ее действиями управляет вегетативная нервная система и гормоны эндокринной системы. Гладкая ткань образует стенки кровеносных сосудов, дыхательных путей и внутренних органов. С сердечной мышцей их роднит то, что ими также управляют эндокринная система и вегетативная нервная система.

Рассматривая мышечную ткань скелетных мышц невооруженным глазом, можно увидеть отдельные пучки, состоящие из волокон, которые и являются фактически мышечными клетками, образованными волоконцами миофибрилл (см. рис. 4.2). Каждая миофибрилла, каждая мышечная клетка и каждый пучок волокон окружены слоем соединительной ткани. Ближе к окончанию мышцы все эти слои объединяются и образуют сухожилие, с помощью которого мышца прикрепляется к костям (см. рис. 4.3).

Миофибриллы представляют собой сочетание толстых и тонких белковых нитей, расположенных параллельно друг другу. Именно они и обладают способностью к сокращению.

При сокращении мышечной клетки в молекулах постоянно образуются и разрушаются связи между толстыми и тонкими нитями волокон. Подобно храповому механизму, они шаг за шагом подтягивают одну миофибриллу к другой. При сокращении достаточного количества миофибрилл вся мышца стремится укоротиться.

Произойдет ли укорочение мышцы в действительности, зависит от внешних факторов, в частности от наличия и величины сопротивления. Если сокращается лишь небольшое количество волокон, они могут попросту не суметь преодолеть силу тяжести той части тела, к которой прикреплена мышца, например руки или головы. Наш собственный вес — результат гравитации — является главным источником сопротивления. Нам приходится иметь дело с этой силой каждый раз, когда мы поднимаем руку, встаем, поворачиваемся или делаем вдох. Дополнительное сопротивление может оказывать вес груза, который необходимо переместить, сокращение мышц-антагонистов или даже эмоциональное состояние (стресс, раздражение, печаль увеличивают сопротивление мышечным усилиям, в то время как радость, спокойствие, чувство облегчения уменьшают его).

Мышцы не сокращаются по принципу «всё или ничего». Далеко не все мышечные волокна участвуют в этом процессе. Мышца производит лишь то усилие, которое определяется путем диалога между ней и нервной системой. В результате даже при активизации волокон реального сокращения может не происходить. Более того, активная мышца может даже удлиняться если сила противодействия превосходит ее собственные усилия.

Мышечные действия могут носить концентрический, эксцентрическим или изометрический характер (см. рис. 4.4). Этими терминами описывается соотношение между усилием мышцы и величиной сопротивления.

Мышечные волокна сокращаются, производя достаточное усилие, чтобы преодолеть сопротивление. В результате мышца укорачивается.

Мышечные волокна сокращаются, но их усилий недостаточно для того, чтобы преодолеть сопротивление. В результате мышца удлиняется. Этот процесс не следует путать с удлинением мышцы в состоянии расслабления.

Мышечные волокна сокращаются и производят усилие, в точности уравновешивающее силу сопротивления. Внешне складывается впечатление, что мышца неподвижна: она не удлиняется и не укорачивается. Существует определенная разница между ситуациями, когда вы просто хотите компенсировать какое-то внешнее воздействие и когда хотите преодолеть сопротивление, но вам не хватает для этого сил. То есть изометрическое действие может осуществляться как при концентрическом, так и при эксцентрическом сокращении мышцы.

Если мышца расслаблена, значит, сокращения ее волокон не происходит ни под действием внешних факторов, ни по собственной воле. Но и в состоянии покоя (даже во сне) в мышце всегда присутствует некоторый уровень активности, чтобы при изменении ситуации она могла в любой момент включиться в работу. Например, постуральные мышцы (отвечающие за поддержание положения тела) автоматически реагируют на малейшие отклонения от состояния равновесия, когда мы сидим, стоим или ходим.

В мире спорта и фитнеса часто употребляются такие понятия, как «удлинение» мышцы и ее «растяжка». Важно понимать, что мышца может удлиняться в активном состоянии (эксцентрическое действие), в состоянии расслабления и в момент перехода от активного состояния к пассивному или наоборот.

В любой из этих ситуаций мышечные волокна удлиняются под действием внешних факторов (например, силы тяжести или противодействия другой мышце). Однако удлинение мышцы далеко не всегда означает ее одновременное расслабление.

Не следует путать удлинение мышцы с ее растяжкой. Конечно, в обоих случаях длина мышцы становится больше, но при растяжке в ней должны ощущаться напряжение и даже некоторый дискомфорт. Удлинение мышц может происходить и без растяжки. Этим мы занимаемся буквально на каждом шагу. Все наши повседневные действия состоят из попеременного удлинения и сокращения мышц, и мы при этом не испытываем никакого ощущения растяжки.

Началом считается место прикрепления, которое находится ближе к туловищу или середине тела, а окончанием — точка прикрепления, удаленная от центра и находящаяся, например, ближе к пальцам, черепу или копчику. При этом подразумевается, что начало мышцы крепится к чему-то стабильному и неподвижному, а окончание — к структуре, совершающей движения. Однако так бывает далеко не всегда. Например, каждый раз, выполняя какие-то движения туловищем, мы меняем местами начало и окончание мышц.

Кроме того, такая классификация как бы подразумевает, что мышца развивается и растет по направлению от начала к окончанию. Однако, наблюдая развитие эмбриона, мы зачастую видим, что мышцы зарождаются где-то в другой части тела, а потом перемещаются и встраиваются на предназначенное для них место, так что этот процесс не всегда бывает линейным.

Мышцы никогда не работают изолированно. Мышечная система представляет собой переплетенную сеть, в которой одна часть компенсирует, усиливает или видоизменяет усилия другой посредством соединительных тканей.

Взаимодействие мышц осуществляется разными способами. Можно, например, проанализировать, как они уравновешивают действие друг друга применительно к какому-то одному суставу, как сочетаются между собой действия различных слоев мышц или как работает кинетическая цепь мышц, соединяющая конечности с туловищем.

Наиболее распространенной классификацией мышц является их деление на агонисты и антагонисты. В данном случае речь идет, как правило, о паре мышц, управляющих движениями одного и того же сустава.

Прежде всего необходимо выделить сустав, в котором совершается какое-то конкретное движение. Мышцы, совершающие его, называются агонистами, а мышцы, препятствующие этому, -— антагонистами(Оба термина имеют греческое происхождение: «агонист» означает «борец», а «антагонист» — его соперник.). Взаимодействие этой пары мышц обычно управляется нервной системой на уровне спинного мозга. Если одна мышца из пары активизируется, вторая получает команду расслабиться или оказать сопротивление. Это взаимодействие называется реципрокной иннервацией. Не все пары агонистов и антагонистов имеют непосредственную связь со спинным мозгом. Некоторые из них взаимодействуют друг с другом на основе сложившихся моделей повторяющихся движений, которые управляются головным мозгом.

Деление мышц на агонисты и антагонисты весьма условно, так как эти роли не являются постоянными и меняются при изменении характера движения в суставе. Вопрос о том, является мышца агонистом или антагонистом, зависит от того, какое именно действие совершается в суставе и откуда исходит сопротивление ему (см. рис. 4.5).

Мышцы, оказывающие помощь агонистам и антагонистам, называются синергистами. Помощь может выражаться, в частности, в том, что они сводят к минимуму избыточные действия или стабилизируют какую-то часть тела, чтобы создать прочную опору для движений. В последнем случае синергисты носят название фиксаторов. Кроме того, синергистами иногда называют группу мышц, которые совместно совершают какое-то действие. Работа синергистов имеет большое значение для сбалансированности суставов.

Деление мышц на агонисты и антагонисты полезно в том случае, когда мы имеем дело с изолированным движением, совершаемым в конкретном суставе. Там же, где в движении участвует несколько суставов, работу мышц приходится анализировать исходя из других критериев.

Группы мышц могут располагаться в несколько слоев. В конечностях самым глубоким слоем считается тот, который расположен ближе к кости, а самым поверхностным — находящийся дальше всех от нее. Что же касается туловища, то некоторые самые глубокие мышцы расположены даже глубже костей (например, ребер или лопаток). Поверхностными считаются те, которые расположены ближе к стенкам полостей тела.

Иногда даже в самых простых ситуациях мышца, в начале движения выступавшая в роли антагониста, к его окончанию превращается в агониста. Рассмотрим это на простом примере. Вытяните руку в сторону параллельно полу, а затем начинайте сгибать ее в локте, приводя кисть к плечу. В первой части движения, пока предплечье не достигло вертикального положения, трицепс является антагонистом по отношению к бицепсу. А уже во второй части трицепс начинает выполнять роль агониста, совершая эксцентрическую работу.

Мышцы на своем протяжении могут пересекать различное количество суставов. Соответственно, одни мышцы управляют движениями только в одном суставе, другие — в двух, а некоторые (например, мышцы ладони или стопы) — в 8-9 суставах. Мышцы спины могут пересекать 12-15 суставов позвоночника. Диафрагма оказывает влияние более чем на 100 суставов. Работой некоторых из них она управляет непосредственно, а других — посредством фасций и костных связей.

За редкими исключениями, чем глубже расположен мышечный слой, тем короче составляющие его мышцы. В качестве исключений можно назвать короткие разгибатели пальцев кисти и стопы, которые расположены ближе к поверхности, чем соответствующие длинные разгибатели, а также малую поясничную мышцу, которая расположена над большой поясничной мышцей. Большая поясничная мышца, как и диафрагма, принадлежит к числу самых глубоких мышц тела, но при этом пересекает множество суставов. Короткие глубокие мышцы, охватывающие только один сустав, называются моноартикулярными. Они выполняют, как правило, какую-то одну определенную функцию и играют важную роль в стабилизации сустава и защите его от повреждений.

Более длинные и сильные мышцы расположены ближе к поверхности. Они могут охватывать уже несколько суставов. В таком случае мышцы оказывают непосредственное воздействие на каждый из этих суставов, а также опосредованно влияют на все остальные суставы тела. Такие мышцы называются полиартикулярными. Их задача заключается в том, чтобы объединить действия сразу нескольких суставов конечности или обеспечить согласованные движения конечности и туловища. Они справляются с большими нагрузками и, если говорить о диафрагме, координируют сложные изменения формы полостей тела.

Вокруг всех суставов располагаются как моноартикулярные, так и полиартикулярные мышцы. Таким образом, каждый сустав имеет возможность совершать свойственные ему специфические движения и одновременно участвовать в движениях соседних суставов и всего тела в целом.

Если мы не будем учитывать это обстоятельство, то никогда не откроем в себе все доступные нам возможности. Используя только крупные поверхностные мышцы, мы вынуждены прилагать слишком большие усилия. Если же мы чрезмерно сосредоточимся на мелких моноартикулярных мышцах, от нас ускользнет общая картина движения. Следовательно, для выполнения эффективных движений важны все мышцы.

Анализируя мышцы, окружающие какой-то конкретный сустав, мы не должны забывать о том, что все мышцы — и поверхностные, и глубокие — взаимодействуют друг с другом, образуя кинетическую цепь. Их надо рассматривать не по отдельности, а в комплексе, вместе с соединительными тканями, объединяющими их в единое динамическое целое.

Любая мышца, активизируясь, оказывает влияние на весь организм с помощью соединительных тканей. Где бы ни произошло движение, оно распространяется по кинетической цепи мышц, следуя по сенсорно-моторным путям нервной системы, которая определяет последовательность активизации мышц.

Для решения какой-то задачи, для совершения эффективного движения никогда не используется одна-единственная мышца. Всегда задействуется несколько мышц — но не больше, чем требуется для выполнения намеченного действия.

Понимание принципов, по которым мышцы взаимодействуют с костями и нервами, поможет избавиться от чрезмерно упрощенного взгляда на мышечную систему, который существенно ограничивает нас в выборе действий.

Кости поддерживают вес тела, а мышцы приводят в движение кости.Одно дело, когда мышцы приводят кости в положение, в котором они могут оптимально выдерживать силу тяжести, и совсем другое — когда мышцам самим приходится брать на себя эту работу.

Когда мышцы берут на себя функцию поддержания веса тела, они подвергаются повышенным нагрузкам и, как следствие, теряют эластичность и закрепощаются. Если же эта задача решается при помощи костей, мышцы постоянно находятся в движении, внося мелкие коррективы в положение тела и обеспечивая его динамическое равновесие.

Эффективнее всего мышцы работают тогда, когда они способны регулировать свой тонус. Понятие тонуса проще всего объяснить как готовность мышцы к реакции. Если тонус высок, достаточно даже небольшого раздражения, чтобы вызвать в ней ответную реакцию. При слабом тонусе требуется достаточно сильное воздействие, чтобы мышца на него отреагировала.

Существует огромная разница между ситуациями, когда сила тяжести беспрепятственно проходит через кинетическую цепь костей и когда она пассивно «застревает» в суставах. В последнем случае связки, окружающие сустав, вынуждены компенсировать эту силу, подвергаясь большим нагрузкам.

Тонус достаточно тесно связан с чувствительностью, но это не одно и то же. Ткань может быть весьма чувствительной, но иметь низкий тонус. Она моментально фиксирует даже слабый раздражитель, но не реагирует на него, пока уровень раздражения не повысится до достаточной степени. Точно так же ткань может иметь высокий тонус, но слабую чувствительность. Она готова быстро реагировать, но не замечает раздражителей.

Все ткани тела должны быть способны менять свой тонус в зависимости от условий внутренней и внешней среды. Важен не абсолютный показатель тонуса, а способность ткани адаптироваться к окружающим условиям.

Если тонус мышцы низок, она вступает в действие с опозданием, которое должно компенсироваться другими мышцами. Это нарушает сбалансированность суставов, создает чрезмерную нагрузку на связки и может привести к повреждениям связок и мышц.

Вместе с тем при слишком высоком тонусе мышечная ткань потребляет значительно больше энергии, чем требуется. Результатом опять-таки становится разбалансированность суставов, ведущая к травмам.

Поскольку в мышцах имеется большое количество нервных окончаний, их тонус может регулироваться в широком диапазоне. Цель такой регулировки состоит в том, чтобы обеспечивать эффективную работу мышц, создавая в них лишь такое усилие, которого достаточно для выполнения намеченного действия.

Тонус мышц меняется в зависимости от силы сопротивления. В мышечной ткани расположены проприоцепторы нервной системы, которые носят название «мышечное веретено». Одна из их задач заключается в фиксации процессов, которые происходят в мышце, когда она сталкивается с сопротивлением. Эта информация используется для изменения тонуса мышц, позволяя адаптировать его к величине сопротивления.

Тонус мышц формируется в результате постоянно растущего сопротивления. Именно сопротивление (обычно сила тяжести) чаще всего является основным источником информации, поступающей по каналам обратной связи от проприоцепторов. Если мышца имеет возможность испытывать различную степень сопротивления, она учится регулировать свой тонус.

Когда сопротивление отсутствует, то нервные окончания в мышцах не получают информации, в связи с чем способность мышц к изменениям то-нуса не развивается.

Нервная система—не единственный путь, по которому поступает информация о состоянии тела. Клетки могут общаться друг с другом напрямую через окружающую их жидкость посредством юкстакринного, паракринного и эндокринного механизмов гормонального взаимодействия.

Мышцы могут только тянуть, но не толкать. При концентрическом сокращении усилие мышц превышает силу сопротивления, при эксцентрическом — уступает ей, а при изометрическом — в точности уравновешивает ее.

В каждой из описанных ситуаций волокна миофибрилл сокращаются, создавая тяговое усилие. Необходимо подчеркнуть, что мышечное действие создается только в направлении сокращения мышцы — и ни в каком другом. Если мышца активно работает и при этом растягивается, это означает лишь то, что ей не хватает силы для преодоления сопротивления.

Но как же в таком случае выполняются толкательные движения? В любом суставе присутствуют пары мышц, отвечающих за его разнонаправленные движения, независимо от того, о чем идет речь — о сгибании, разгибании или вращении. Когда одна мышца из этой пары сокращается, другая удлиняется. Удлинение может происходить в состоянии расслабления или эксцентрического действия.

Эластичность и сила мышц зависят от взаимодействия нервной и мышечной систем. Эластичность мышц — это их способность к растяжению, а сила определяется способностью к интенсивному и быстрому сокращению. Оба этих качества находятся в прямой зависимости как от состояния мышечных волокон и соединительных тканей, так и от деятельности нервной системы.

Эластичность мышцы не определяется ее фактической длиной или тонусом; она в большей степени зависит от находящихся в ней проприоцепторов нервных окончаний. Основываясь на предыдущем опыте, они снабжают нервную систему данными о том, какая степень растяжения является допустимой, безопасной и функциональной.

В свою очередь, сила мышцы больше зависит от ее физических свойств, в частности от количества мышечных волокон. Но мышечная сила — это еще и продукт взаимодействия с нервной системой, которая активизирует волокна и координирует работу кинетической цепи. Если нервная система работает неэффективно, функциональная сила уменьшается, так как мышцам приходится дополнительно преодолевать сопротивление других находящихся поблизости мышц.

Повышение эластичности и силы может осуществляться за счет «перенастройки» нервной системы. Для этого надо много тренироваться, уделять внимание растяжке мышц, сознательно и вдумчиво относиться к тренировкам.

Суставы и кости со всех сторон окружены мышцами, образующими сложное переплетение слоев. В эмбриологическом плане формирование мышц происходит по пути движения жидкостей в теле плода из туловища в конечности. Это движение носит сложный нелинейный характер, что отражается и на строении мышечной системы.

Совершенно очевидно, что такая трехмерная конструкция мышц сугубо индивидуальна и у каждого человека складывается уникальная модель динамического удлинения и сокращения мышц при выполнении самых обычных повседневных действий, будь то ходьба, разговор, откупоривание бутылки или чистка зубов. То, что является оптимальной схемой движений для одного человека, совсем необязательно будет таковой для другого.

Руководствуясь при выборе модели движения традиционными представлениями, мы можем скатиться к ложным обобщениям касательно роли и предназначения мышц.

К каким выводам мы можем, например, прийти, если предположим, будто в каждой схожей ситуации все люди должны совершенно одинаково использовать свои мышцы? Что существует единственно правильный способ совершения того или иного движения? Что этот способ одинаково годится для всех? Что если что-то не получается, значит, нужно просто больше стараться?

Приняв за основу неверную посылку, будто можно дать полный и окончательный анализ любого движения или последовательности движений, мы сами создаем себе препятствия и ограничиваем выбор. Если же мы будем непредвзято относиться к каждой возникающей возможности действий, то откроем для себя огромный выбор вариантов и способов выполнения любого, даже самого простого движения.

источник

К основным функциональным свойствам мышечной ткани относятся возбудимость, сократимость, растяжимость, эластичность и пластичность.

Возбудимость — способность мышечной ткани приходить в состояние возбуждения при действии тех или иных раздражителей. В обычных условиях происходит электрическое возбуждение мышцы, вызываемое разрядом мотонейронов в области концевых пластинок. Возникающий под влиянием медиатора потенциал концевой пластинки (ПКП), достигнув порогового уровня (около 30 мВ), вызывает генерацию потенциала действия, распространяющегося в обе стороны мышечного волокна.

Возбудимость мышечных волокон ниже возбудимости нервных волокон, иннервирующих мышцы, хотя критический уровень деполяризации мембран в обоих случаях одинаков. Это объясняется тем, что потенциал покоя мышечных волокон выше (около 90 мВ) потенциала покоя нервных волокон (70 мВ). Следовательно, для возникновения потенциала действия в мышечном волокне необходимо деполяризовать мембрану на большую величину, чем в нервном волокне.

Способность мышцы реагировать на раздражение ее двигательного мотонейрона, т.е. на импульсы, приходящие к ней по нерву, обозначается как непрямая возбудимость мышцы. Однако возбудимостью обладает и само мышечное волокно. Это доказывается раздражением участков мышцы, где отсутствуют окончания двигательного нерва.

Можно исключить влияние нервных элементов на мышцу, подвергнув ее отравлению некоторыми ядами (например, кураре). В этом случае возбуждение с нерва на мышцу не передается, но нерв и мышца сами по себе продолжают функционировать, т.е. мышца продолжает реагировать на непосредственно наносимое на нее раздражение. Таким образом, опыты подобного рода с несомненностью устанавливают наличие в мышечном волокне так называемой прямой возбудимости, т.е. способности мышечных волокон реагировать и на раздражение, действующее непосредственно и на них, а не через нервные волокна.

И прямая и непрямая возбудимость мышцы обусловлена функцией мембраны мышечного волокна. Возбуждение в мышцах проводится изолированно, т.е. не переходит с одного мышечного волокна на другое. Скорость распространения возбуждения в белых и красных волокнах скелетных мышц различна: в белых волокнах она равна 12–15, в красных — 3–4 м/с.

В мышцах имеется пассивный упругий компонент, который включает сухожилия, соединительную ткань, покрывающую мышечные волокна, их пучки и мышцу в целом, а также упругие образования боковых поперечных мостиков миозиновой нити. Поэтому скелетная мышца — упругое образование. Упругостью обладают активные сократительные и пассивные компоненты мышцы, которые и обеспечивают растяжимость, эластичность и пластичность мышц.

Растяжимость — свойство мышцы удлиняться под влиянием силы тяжести (нагрузки). Чем больше нагрузка, тем больше растяжимость мышцы. Растяжимость зависит и от вида мышечных волокон. Красные волокна растягиваются больше, чем белые, мышцы с параллельными волокнами удлиняются больше, чем перистые. Даже в условиях покоя мышцы всегда несколько растянуты, поэтому они упруго напряжены (находятся в состоянии мышечного тонуса).

Эластичность — свойство деформированного тела возвращаться к первоначальному своему состоянию после удаления силы, вызвавшей деформацию. Это свойство изучается при растяжении мышцы грузом. После удаления груза, мышца не всегда достигает первоначальной длины, особенно при длительном растяжении или под действием большого груза. Это связано с тем, что мышца теряет свойство совершенной упругости.

Пластичность — (греч.plastikos — годный для лепки, податливый) свойство тела деформироваться под действием механических нагрузок, сохранять приданную или длину или вообще форму после прекращения действия внешней деформирующей силы. Чем длительнее действует большая внешняя сила, тем сильнее пластические изменения.

Пластичность мышц связана и с остаточным укорочением мышц после длительного тетанического сокращения, или контрактуры. Красные волокна, которые удерживают тело в определенном положении, обладают большей пластичностью, чем белые.

Не нашли то, что искали? Воспользуйтесь поиском:

источник

Читайте также:  Зажим мышцы на спине и шеи