Меню Рубрики

Энергетическое обеспечение сокращения и расслабления мышц

Роль нервной системы в регуляции движений

Произвольное движение человека регулируется и контролируется сложными взаимоотношениями в ЦНС И ПНС. Регуляция происходит с помощью трех мощных сенсорных системы: зрительная (глаза), вестибулярная (внутреннее ухо), соматическая (тело).

Для нас особый интерес представляет информация, которую ЦНС получает от соматической сенсорной системы – рецепторов, расположенных в мышцах, сухожилиях, связках, суставных капсулах и коже. Эти органы чувств собирают информацию о положении тела, о направлении и скорости движения – проприорецепторы

Правильное выполнение упражнений зависит от информации, поступающей в головной мозг из сенсорных проводящих путей. Головной мозг перерабатывает эту информацию и формирует двигательную реакцию относительно величины, направления и скорости изменения движения тела в пространстве.

Кинестетическое восприятие положение тела в пространстве – осознанное восприятие положение частей тела, а также величины и скорости движения. Эта информация поступает от проприорецепторов, находящихся в мышцах, капсулах, суставах, связках. Этот тип информации позволяет человеку инициировать и видоизменять движения, он помогает человеку воспринимать положение тела в пространстве. Если неправильное положение тела в пространстве становится привычным, человек может воспринимать его как нормальным. Чтобы изменить такое восприятие, сенсорам необходимо предоставить дополнительную информацию. (сутулость – ретракция лопаток)

Во время выполнения сложного физического упражнения (жим в положении лежа) ЦНС И ПНС работают в паре, начиная, направляя и контролируя все аспекты движения. Перефер. рецепторы, расположенные в участке тренируемой руки непрерывно обеспечивают ЦНС обратной информацией о количестве испытываемого сопротивления, положения конечностей, давлении на ладони, туки и т.д.

Такая связь между ЦНС И ПНС, по взаимоиспользованию двигательных и проводящих путей, необходима чтобы выполнять как простые , так и сложные виды физической деятельности.

Сенсорные рецепторы участвуют в рефлексах. В наших мышцах имеются нервно-мышечные веретена, а в сухожилиях — нервно-сухожильные веретена – два вида проприорецепторов. Нервно-мышечные веретена чувствительны к высоким уровням или резкому увеличению напряжения в мышце и реагируют на это включением рефлекса растяжения – защитной активации с целью предупреждения травмы. Точно также реагируют на растяжения нервно-сухожильные веретена, нах. в сухожилиях, однако его действие направлено на то, чтобы расслабить мышцу и предотвратить травму. Оба рефлекса являются защитным

Сухожильный орган Гольджи

Сухожильный орган Гольджи представляет собой заключенный в капсулу сенсорный рецептор, через который проходят волокна мышечного сухожилия. Примерно 10-15 мышечных волокон обычно связаны с каждым сухожильным органом Гольджи, и рецептор стимулируется, когда этот небольшой пучок мышечных волокон «напрягается» при сокращении или растяжении мышцы.

Таким образом, основное различие в возбуждении сухожильного органа Гольджи по сравнению с мышечным веретеном заключается в том, что веретено определяет длину мышцы и изменение длины мышцы, тогда как сухожильный орган определяет напряжение мышцы, которое изменяет собственное напряжение рецептора.

Сухожильный орган, как и первичный рецептор мышечного веретена, имеет динамический и статический ответы, интенсивно реагируя при внезапном увеличении напряжения мышцы (динамический ответ) с последующим снижением активности в течение доли секунды до более низкого уровня устойчивой импульсации, почти прямо пропорционального напряжению мышцы (статический ответ). Таким образом, сухожильные рецепторы Гольджи обеспечивают нервную систему непрерывной информацией о степени напряжения любого небольшого сегмента каждой мышцы.

Когда напряжение мышцы и, следовательно, сухожилия становится чрезмерным, мощное тормозное влияние от сухожильного органа может привести к внезапной реакции спинного мозга, которая вызывает мгновенное расслабление всей мышцы.Такой эффект называют реакцией удлинения; этот защитный механизм, вероятно, предупреждает разрыв мышцы или отрыв сухожилия от места его прикрепления к кости. Известно, например, что в лабораторных условиях прямая электрическая стимуляция мышц, которой не может противодействовать этот отрицательный рефлекс, иногда приводит к таким пагубным эффектам.

Возможная роль сухожильного рефлекса для выравнивания силы сокращения среди мышечных волокон.

Другой вероятной функцией рефлекса от рецепторов Гольджи является выравнивание силы сокращения отдельных мышечных волокон. Это значит, что избыточно напряженные волокна рефлекторно тормозятся, тогда как слабо напряженные волокна из-за отсутствия их торможения возбуждаются сильнее. Это равномерно распределяет мышечную нагрузку по всем волокнам и предупреждает повреждение изолированных участков мышцы, где небольшому числу волокон грозит перерастяжение.

ЭНЕРГЕТИЧЕСКОЕ ОБЕСПЕЧЕНИЕ МЫШЕЧНОГО СОКРАЩЕНИЯ.

В работающих мышцах происходит интенсивный обмен веществ, сопровождающийся сложными химическими превращениями с выделением и тратой большого количества энергии. При этом одни химические реакции протекают без участия кислорода — анаэробная (бескислородная) фаза, другие — с участием кислорода — аэробная (кислородная) фаза. В схематичном изложении эти реакции протекают в следующем порядке.

Непосредственным источником энергии для мышечной деятельности служит реакция расщепления АТФ. При ферментативном гидролизе АТФ происходит освобождение энергии, преобразуемой в процессе мышечного сокращения в механическую работу.

Аденозинтрифосфат (АТФ) является нуклеотидом. В состав моле­кулы АТФ входят азотистое основание — аденин, углевод — рибоза и три остатка фосфорной кислоты (аденин, связанный с рибозой, назы­вается аденозином).

Особенностью молекулы АТФ является то, что второй и третий ос­татки фосфорной кислоты присоединяются связью, богатой энергией. Такая связь называется высокоэнергетической, или макроэргической, и обозначается знаком Соединения, имеющие макроэргические связи, обозначаются термином «макроэрги».

Структурная формула АТФ имеет следующий вид:

В упрощенном виде строение АТФ можно отразить схемой: Аденин — рибоза.— Ф.К.

При использовании АТФ в качестве источника энергии обычно происходит отщепление путем гидролиза последнего остатка фосфор­ной кислоты:

В физиологических условиях, т. е. при тех условиях, которые име­ются в живой клетке (температура, рН, осмотическое давление, кон­центрация реагирующих веществ и пр.), расщепление моля АТФ (506 г) сопровождается выделением 12 ккал, или 50 кДж* энергии.

Основным поставщиком АТФ является тканевое дыхание — завер­шающий этап катаболизма, протекающий в митохондриях всех клеток, кроме красных клеток крови (эритроцитов).

Содержание АТФ в мышце относительно постоянно. Концентрация АТФ составляет около 5 мм на 1 кг сырого веса мышц (около 25%). Накапливать большое количество АТФ мышца не может, т.к. при этом возникает субстратное угнетение миозиновой АТФ-азн, препятствующее образованию спаек между актиновыми и миозановыми нитями в миофибриллах и ведущее к утрачиванию сократительной способности мышцы. Вместе с тем концентрация АТФ в мышце не может снижаться ниже 2 мм на 1 кг сырого веса ткани, поскольку при этом перестанет действовать «кальциевый насос» в пузырьках, и мышца будет сокращаться вплоть до полного исчерпания всех запасов АТФ и развития тригора (состояния стойкого непроходящего сокращения).

Запасов АТФ в мышце обычно хватает на 3-4 одиночных сокращения максимальной силы. В то же время, как показывают исследования с использованием микробиопсии мышц, в процессе мышечной работы не наблюдается значительного снижения концентрации АТФ. Это объясняется тем, что по ходу мышечной деятельности АТФ восстанавливается из продуктов распада (ресинтезируется) с той же скоростью, с какой она расщепляется в процессе мышечных сокращений. Для обращения реакции гидролиза АТФ конечные продукты распада –АДФ и Н3РО4 – должны получить из реакционной среды энергию, равную той, что выделилась при распаде АТФ. Следовательно, синтез АТФ должен быть сопряжен с каталитическими реакциями, при которых освобождается значительное количество потенциальной химической энергии.

Ресинтез АТФ при мышечной деятельности может осуществляться

как в ходе реакции, идущих без кислорода, так и за счет окислительных превращений в клетках, связанных с потреблением кислорода. В обычных условиях ресинтез АТФ происходит в основном путем аэробных превращений, но при напряженной мышечной деятельности, когда доставка кислорода к мышцам затруднена, в тканях одновременно усиливаются анаэробные процессы ресинтеза АТФ.

Дата добавления: 2016-11-24 ; просмотров: 901 | Нарушение авторских прав

источник

Механизм мышечного сокращения до настоящего времени раскрыт не полностью.

Достоверно известно следующее.

1. Источником энергии для мышечного сокращения являются молекулы АТФ.

2. Гидролиз АТФ катализируется при мышечном сокращении миозином, обладающим ферментативной активностью.

3. Пусковым механизмом мышечного сокращения является повышение концентрации ионов кальция в саркоплазме миоцитов, вызываемое нервным двигательным импульсом.

4. Во время мышечного сокращения между тонкими и толстыми нитями миофибрилл возникают поперечные мостики или спайки.

5. Во время мышечного сокращения происходит скольжение тонких нитей вдоль толстых, что приводит к укорочению миофибрилл и всего мышечного волокна в целом.

Гипотез объясняющих механизм мышечного сокращения много, но наиболее обоснованной является так называемая гипотеза (теория) «скользящих нитей» или «гребная гипотеза».

В покоящейся мышце тонкие и толстые нити находятся в разъединенном состоянии.

Под воздействием нервного импульса ионы кальция выходят из цистерн саркоплазматической сети и присоединяются к белку тонких нитей – тропонину. Этот белок меняет свою конфигурацию и меняет конфигурацию актина. В результате образуется поперечный мостик между актином тонких нитей и миозином толстых нитей. При этом повышается АТФазная активность миозина. Миозин расщепляет АТФ и за счет выделившейся при этом энергии миозиновая головка подобно шарниру или веслу лодки поворачивается, что приводит к скольжению мышечных нитей навстречу друг другу.

Совершив поворот, мостики между нитями разрываются. АТФазная активность миозина резко снижается , прекращается гидролиз АТФ. Однако при дальнейшем поступлении нервного импульса поперечные мостики вновь образуются, так как процесс, описанный выше, повторяется вновь.

В каждом цикле сокращения расходуется 1 молекула АТФ.

Расслабление мышцы происходит после прекращения поступления длительного нервного импульса. При этом проницаемость стенки цистерн саркоплазматической сети уменьшается, и ионы кальция под действием кальциевого насоса, используя энергию АТФ, уходят в цистерны. Белки вновь приобретают конформацию характерную для состояния покоя.

Таким образом, и процесс мышечного сокращения и процесс мышечного расслабления – это активные процессы, идущие с затратами энергии в виде молекул АТФ,

В гладких мышцах ионы кальция также играют роль в сокращении, но поступают в мышцу не из цистерн, а из внеклеточного вещества. Этот процесс медленный и поэтому медленно работают гладкие мышцы.

1. Количественные критерии путей ресинтеза АТФ,

2. Аэробный путь ресинтеза АТФ.

3. Анаэробные пути ресинтеза АТФ,

4. Соотношения между различными путями ресинтеза АТФ при мышечной работе.

Зоны относительной мощности мышечной работы.

Сокращение и расслабление мышцы нуждаются в энергии, которая образуется при гидролизе молекул АТФ.

Однако запасы АТФ в мышце незначительны, их достаточно для работы мышцы в течении 2 секунд. Образование АТФ в мышцах называется ресинтезом АТФ.

Таким образом, в мышцах идет два параллельных процесса – гидролиз АТФ и ресинтез АТФ.

Ресинтез АТФ в отличие от гидролиза может протекать разными путями, а всего, в зависимости от источника энергии их выделяют три: аэробный (основной), креатинфосфатный и лактатный.

Для количественной характеристики различных путей ресинтеза АТФ обычно используют несколько критериев.

1. Максимальная мощность или максимальная скорость – это наибольшее количество АТФ, которое может образоваться в единицу времени за счет данного пути ресинтеза. Измеряется максимальная мощность в калориях или джоулях, исходя из того что один ммоль АТФ соответствует физиологическим условиям примерно 12 кал или 50 Дж. Поэтому данный критерий имеет размерность кал/мин-кг мышечной ткани или Дж/мин-кг мышечной ткани.

2. Время развертывания – это минимальное время, необходимое для выхода ресинтеза АТФ на свою наибольшую скорость, то есть для достижения максимальной мощности. Этот критерий измеряется в единицах времени.

3. Время сохранения или поддержания максимальной мощности – это наибольшее время функционирования данного пути ресинтеза АТФ с максимальной мощностью.

4. Метаболическая ёмкость – это общее количество АТФ, которое может образоваться во время мышечной работы за счет данного пути ресинтеза АТФ.

В зависимости от потребления кислорода пути ресинтеза делятся на аэробные и анаэробные.

источник

Процессы мышечной работы представляют собой многоуровневый комплекс физиологических и биохимических функций, жизненно важных для полноценной работы человеческого организма. Внешне подобные процессы можно наблюдать на примерах произвольных движений при ходьбе, беге, изменении мимики и т. д. Однако они охватывают гораздо больший спектр функций, в числе которых также значится работа дыхательного аппарата, органов пищеварения и выделительной системы. В каждом случае механизм мышечных сокращений подкрепляется работой миллионов клеток, в которой задействуются химические элементы и физические волокна.

Мышцы формируются множеством волокон ткани, которые имеют узлы крепления к костям скелета. Они располагаются параллельно и в процессе мышечной работы взаимодействуют между собой. Именно волокна при поступлении импульсов обеспечивают механизм мышечного сокращения. Кратко структуру мышцы можно представить как систему, состоящую из молекул саркомер и миофибрилла. Важно понимать, что каждое мышечное волокно образуется множеством субъединиц миофибрилл, располагающихся продольно по отношению друг к другу. Теперь стоит отдельно рассмотреть саркомеры и филаменты. Поскольку они играют важную роль в двигательных процессах.

Саркомеры представляют собой сегменты волокон, которые отделяются так называемыми Z-пластинами, содержащими бета-актинин. От каждой пластины отходят актиновые филаменты, а промежутки заполняются толстыми миозиновыми аналогами. Актиновые элементы, в свою очередь, похожи на ниточки бус, закрученных в двойную спираль. В этой структуре каждая бусинка является молекулой актина, а в участках с углублениями в спирали находятся молекулы тропонина. Каждая из этих структурных единиц формирует механизм сокращения и расслабления мышечного волокна, связываясь друг с другом. Ключевую роль в возбуждении волокон играет клеточная мембрана. В ней заключены поперечные трубочки-инвагинации, которые активизируют функцию саркоплазматического ретикулума – это и будет возбуждающий эффект для мышечной ткани.

Теперь стоит отойти от углубленной структуры мышцы и рассмотреть двигательную единицу в общей конфигурации скелетной мышцы. Это будет совокупность мышечных волокон, иннервируемых отростками мотонейрона. Работа ткани мышцы независимо от характера действия будет обеспечиваться волокнами, включенными в состав одной двигательной единицы. То есть при возбуждении мотонейрона срабатывает механизм мышечных сокращений в рамках одного комплекса с иннервируемыми отростками. Такое разделение на мотонейроны позволяет целенаправленно задействовать конкретные мышцы, не возбуждая без надобности соседние двигательные единицы. По сути, вся мышечная группа одного организма делится на сегменты мотонейронов, которые могут объединяться в работе над сокращением или расслаблением, а могут действовать разнопланово или поочередно. Главное, что они независимы друг от друга и работают только с сигналами своей группы волокон.

Читайте также:  Напряжение мышц спины последствия

В соответствии с молекулярной концепцией о скольжении нитей, работа мышечной группы и, в частности, ее сокращение реализуется в ходе скользящего действия миозинов и актинов. Реализуется сложный механизм взаимодействия этих нитей, в котором можно выделить несколько процессов:

  • Центральная часть миозиновой нити соединяются со связками актинов.
  • Достигнутый контакт актина с миозином способствует конформационному перемещению молекул последнего. Головки вступают в фазу активности и разворачиваются. Таким образом осуществляются молекулярные механизмы мышечного сокращения на фоне перестройки нитей активных элементов по отношению друг к другу.
  • Затем происходит взаимное расхождение миозинов и актинов с последующим восстановлением головной части последних.

Весь цикл выполняется несколько раз, в результате чего происходит смещение вышеупомянутых нитей, а Z-сегменты саркомеров сближаются и укорачиваются.

Среди основных физиологических свойств мышечной работы выделяют сократимость и возбудимость. Эти качества, в свою очередь, обуславливаются проводимостью волокон, пластичностью и свойством автоматии. Что касается проводимости, то она обеспечивает распространение процесса возбудимости между миоцитами по нексусам – это специальные электропроводящие контуры, отвечающие за проведение импульса сокращения мышцы. Однако после сокращения или расслабления тоже совершается работа волокон.

За их спокойное состояние в определенной форме отвечает пластичность, определяющая сохранение постоянного тонуса, в котором на текущий момент находится механизм мышечного сокращения. Физиология пластичности может проявляться как в виде сохранения укороченного состояния волокон, так и в их растянутом виде. Интересно и свойство автоматии. Она определяет способность мышц входить в рабочую фазу без подключения нервной системы. То есть миоциты самостоятельно вырабатывают ритмически повторяющиеся импульсы для тех или иных действий волокон.

В работе мышц участвует целая группа химических элементов, среди которых кальций и сократительные белки наподобие тропонина и тропомиозина. На базе этого энергетического обеспечения и выполняются рассмотренные выше физиологические процессы. Источником же этих элементов выступает аденозинтрифосфорная кислота (АТФ), а также ее гидролиз. При этом запас АТФ в мышце способен обеспечивать сокращение мышцы лишь в течение доли секунды. Несмотря на это, волокна могут отвечать на нервные импульсы в постоянном режиме.

Дело в том, что биохимические механизмы мышечного сокращения и расслабления с поддержкой АТФ связаны с процессом выработки резервного запаса макроэрга в виде креатинфосфата. Объем этого резерва в несколько раз превышает запас АТФ и в то же время способствует его генерации. Также помимо АТФ энергетическим источником для мышцы может выступать гликоген. К слову, на мышечные волокна приходится около 75% всего запаса данного вещества в организме.

В спокойном состоянии нити волокон не взаимодействуют друг с другом посредством скольжения, так как центры связок закрываются молекулами тропомиозина. Возбуждение может иметь место только после электромеханического сопряжения. Данный процесс также делится на несколько этапов:

  • При активации нейромышечного синапса на мембране миофибриллы формируется так называемый постсинаптический потенциал, накапливающий энергию для действия.
  • Возбуждающий импульс благодаря системе трубок расходится по мембране и активизирует ретикулум. Этот процесс в итоге способствует снятию барьеров с каналов мембраны, по которым выпускаются ионы, связывающиеся с тропонином.
  • Белок тропонин, в свою очередь, открывает центры связок актина, после чего становится возможным механизм мышечных сокращений, но для его начала также потребуется соответствующий импульс.
  • Использование открывшихся центров начнется в момент, когда к ним присоединятся головки миозина по описанной выше модели.

Полный цикл этих операций происходит в среднем за 15 мс. Период от начальной точки возбуждения волокон до полного сокращения называется латентным.

При расслаблении мышц происходит обратный перенос ионов Са++ с подключением ретикулума и кальциевых каналов. В процессе выхода ионов из цитоплазмы количество центров связки сокращается, в результате чего происходит разъединение актиновых и миозиновых филаментов. Иными словами, механизмы мышечного сокращения и расслабления подключают те же функциональные элементы, но оперируют ими разными способами. После расслабления может наступать процесс контрактуры, при котором отмечается устойчивое сокращение мышечных волокон. Это состояние может сохраняться до момента, пока не наступит очередное действие раздражающего импульса. Бывает и контрактура краткого действия, предпосылками для которой становится тетаническое сокращение в условиях скопления ионов с большими объемами.

Когда мускулатура приводится в действие раздражающим импульсом сверхпороговой силы, происходит одиночное сокращение, в котором можно выделить 3 фазы:

  • Уже упомянутый выше период сокращения латентного типа, в процессе которого волокна накапливают энергию для совершения последующих действий. В это время проходят процессы электромеханического сопряжения и открываются центры связок. На данной стадии подготавливается механизм сокращения мышечного волокна, который активизируется после распространения соответствующего импульса.
  • Фаза укорочения – длится 50 мс в среднем.
  • Фаза расслабления – также длится примерно 50 мс.

Работа при одиночном сокращении была рассмотрена как пример «чистой» механики мышечных волокон. Однако в естественных условиях такая работа не совершается, поскольку волокна находятся в постоянном отклике на сигналы двигательных нервов. Другое дело, что в зависимости от характера этого отклика может происходить работа в следующих режимах:

  • Сокращения возникают при пониженной частоте импульсов. Если электрический импульс распространяется после завершения расслабления, то следует серия одиночных актов сокращения.
  • Высокая частота импульсных сигналов может совпадать с расслабляющей фазой предшествующего цикла. В этом случае амплитуда, в которой работал механизм сокращения мышечной ткани, будет суммироваться, что обеспечит длительное сокращение с неполными актами расслабления.
  • В условиях повышения частоты импульсов новые сигналы будут действовать в периоды укорочения, что спровоцирует длительное сокращение, которое не будет прерываться расслаблениями.

Амплитуды сокращений определяются частотой импульсов, которые раздражают мышечные волокна. В этой системе взаимодействия сигналов и откликов можно выделить оптимум и пессимум частоты. Первым обозначается частота, которая в момент действия будет накладываться на фазу повышенной возбудимости. В таком режиме может активизироваться механизм сокращения мышечного волокна с большой амплитудой. В свою очередь, пессимум определяет более высокую частоту, импульс которой приходится на фазу рефрактерности. Соответственно, в этом случае амплитуда уменьшается.

Мышечные волокна могут осуществлять работу динамически, статически и динамически-уступающе. Стандартная динамическая работа является преодолевающей – то есть мышца в момент сокращения перемещает объекты или его составные части в пространстве. Статическое действие мышцы в некотором роде избавлено от нагрузок, поскольку в этом случае не предусматривается изменение его состояния. Динамически-уступающий механизм мышечного сокращения скелетной мышцы срабатывает, когда волокна функционируют в условиях растяжения. Потребность в параллельном растяжении также может быть обусловлена тем, что работа волокон предполагает выполнение операций со сторонними телами.

Процессы организации мышечного действия подключают самые разные функциональные элементы и системы. В работе задействуется сложный комплекс участников, каждый из которых выполняет свою задачу. Можно видеть, как в процессе активации механизма мышечных сокращений срабатывают и косвенные функциональные блоки. Например, это касается процессов генерации энергетического потенциала для совершения работы или системы блокировки центров связок, через которые происходит соединение миозинов и актинов.

Основная же нагрузка приходится непосредственно на волокна, которые выполняют те или иные действия по командам двигательных единиц. Причем характер выполнения определенной работы может быть разным. На него будут влиять параметры направляемого импульса, а также текущее состояние мышцы.

источник

Механизм сокращения н расслабления мышцы. Электромеханическое сопряжение. Энергетическое обеспечение сокращения и расслабления мышцы.

Работа мышцы с небольшой нагрузкой сопровождается редкой частотой нервных импульсов и вовлечением небольшого числа ДЕ. В этих условиях, накладывая отводящие электроды на кожу над мышцей и используя усилительную аппаратуру, можно на экране осциллографа или с применением чернильной записи на бумаге зарегистрировать одиночные потенциалы действия отдельных Д Е. В случае же значительных напряжений потенциалы действия многих ДЕ алгебраически суммируются и возникает сложная интегрированная кривая записи электрической активности целой мышцы — электромиограмма (ЭМГ).

Форма ЭМГ отражает характер работы мышцы: при статических усилиях она имеет непрерывный вид, а при динамической работе — вид отдельных пачек импульсов, приуроченных, в основном, к начальному моменту сокращения мышцы и разделенных периодами «электрического молчания». Особенно хорошо ритмичность появления подобных пачек наблюдается у спортсменов при циклической работе.

По мере развития утомления при той же величине мышечного усилия амплитуда ЭМГ нарастает. Это связано с тем, что снижение сократительной способности утомленных ДЕ компенсируется нервными центрами вовлечением в работу дополнительных ДЕ, т.е. путем увеличения количества активных мышечных волокон. Кроме того, усиливается синхронизация активности Д Е, что также повышает амплитуду суммарной ЭМГ.

Изменение механического состояния миофибриллярного сократительного аппарата мышечных волокон называется сокращением. Внешнее сокращение проявляется в изменении или напряжения, или длины мышцы, или и того и другого. При этом потенциальная химическая энергия превращается в механическую и может совершаться механическая работа.

При произвольной внутренней команде сокращение мышцы человека начинается примерно через 0.05 с (50 мс). За это время моторная команда передается от коры больших полушарий к мотонейронам спинного мозга и по двигательным волокнам к мышце. Подойдя к мышце, процесс возбуждения должен с помощью медиатора преодолеть нервно-мышечный синапс, что занимает примерно 0.5 мс. Медиатором здесь является ацетилхолин, который содержится в синаптических пузырьках в пресинаптической части синапса. Нервный импульс вызывает перемещение синаптических пузырьков к пресинаптической мембране, их опорожнение и выход медиатора в синаптическую щель. Действие ацетилхолина на постсинаптическую мембрану чрезвычайно кратковременно, после чего он разрушается ацетилхолинэстеразой на уксусную кислоту и холин. По мере расходования запасы ацетилхолина постоянно пополняются путем его синтезирования в пресинаптической мембране. Однако, при очень частой и длительной импульсациимотонейрона расход ацетилхолина превышает его пополнение, а также снижается чувствительность постсинаптической мембраны к его действию, в результате чего нарушается проведение возбуждения через нервномышечный синапс. Эти процессы лежат в основе периферических механизмов утомления при длительной и тяжелой мышечной работе.

Выделившийся в синаптическую щель медиатор прикрепляется к рецепторам постсинаптической мембраны и вызывает в ней явления деполяризации. Небольшое подпороговое раздражение вызывает лишь местное возбуждение небольшой амплитуды — потенциал концевой пластинки (ПКП).

Под влиянием Са2+длинные молекулы тропомиозина проворачиваются вдоль оси и скрываются в желобки между сферическими молекулами актина, открывая участки прикрепления головок миозина к актину. Тем самым между актином и миозином образуются так называемые поперечные мостики. При этом головки миозина совершают гребковые движения, обеспечивая скольжение нитей актина вдоль нитей миозина с обоих концов саркомера к его центру, т. е, механическую реакцию мышечного волокна

Расслабление мышечного волокна связано с работой особого механизма — «кальциевого насоса», который обеспечивает откачку ионов Са2+ из миофибрилл обратно в трубочки саркоплазматического ретикулума. На это также тратится энергия АТФ.

При работе мышц химическая энергия превращается в механическую, т.е. мышца является химическим двигателем, а не тепловым. Для процессов сокращения и расслабления мышц потребляется энергия АТФ. Расщепление АТФ с отсоединением одной молекулы фосфата и образованием аденозиндифосфата (АДФ) сопровождается выделением 10 ккал энергии на 1 моль: АТФ = АДФ + Ф + Эн. . Однако запасы АТФ в мышцах невелики (около 5 ммоль • л-1). Их хватает лишь на 1 — 2 с работы. Количество АТФ в мышцах не может изменяться, так как при отсутствии АТФ в мышцах развивается контрактура (не работает кальциевый насос и мышцы не в состоянии расслабляться), а при избытке — теряется эластичность.

Для продолжения работы требуется постоянное восполнение запасов АТФ. Восстановление АТФ происходит в анаэробных условиях — за счет распада креатиносфата (КрФ) и глюкозы (реакции гликолиза) — и в аэробных условиях — за счет реакций окисления жиров и углеводов. Энергосистемы, используемые в качестве источников энергии, обозначают как фосфагенная энергетическая система или система АТФ-КрФ, гликолитическая (или лактацидная) система и окислительная (или кислородная) система.

Реакции окисления обеспечивают энергией работу мышц в условиях достаточного поступления в организм кислорода, т.е. при аэробной работе длительностью более 2-3 мин. Доставка кислорода достигает необходимого уровня после достаточного развертывания функций кислородтранспортных систем организма (дыхательной, сердечнососудистой систем и системы крови). Важным показателем мощности аэробных процессов является предельная величина поступления в организм кислорода за 1 мин — максимальное потребление кислорода (МПК).

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Увлечёшься девушкой-вырастут хвосты, займёшься учебой-вырастут рога 9992 — | 7785 — или читать все.

193.124.117.139 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Описание: Количественные критерии путей ресинтеза АТФ. Аэробный путь ресинтеза АТФ. Анаэробные пути ресинтеза АТФ. Соотношения между различными путями ресинтеза АТФ при мышечной работе.

Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск

Лекция 8. Тема: ЭНЕРГЕТИЧЕСКОЕ ОБЕСПЕЧЕНИЕ МЫШЕЧНОГО СОКРАЩЕНИЯ .

1. Количественные критерии путей ресинтеза АТФ.

2. Аэробный путь ресинтеза АТФ.

3. Анаэробные пути ресинтеза АТФ.

4. Соотношения между различными путями ресинтеза АТФ при мышечной работе. Зоны относительной мощности мышечной работы.

Тема : БИОХИМИЧЕСКМЕ СДВИГИ ПРИ МЫШЕЧНОЙ РАБОТЕ.

1. Основные механизмы нервно-гуморальной регуляции мышечной деятельности.

2. Биохимические изменения в скелетных мышцах.

3. Биохимические сдвиги в головном мозге и миокарде.

4. Биохимические изменения в печени.

5. Биохимические сдвиги в крови.

6. Биохимические сдвиги в моче.

  1. Количественные критерии путей ресинтеза АТФ.

Сокращение и расслабление мышцы нуждаются в энергии, которая образуется при гидролизе молекул АТФ .

Однако запасы АТФ в мышце незначительны, их достаточно для работы мышцы в течении 2 секунд. Образование АТФ в мышцах называется ресинтезом АТФ.

Таким образом, в мышцах идет два параллельных процесса – гидролиз АТФ и ресинтез АТФ.

Ресинтез АТФ в отличие от гидролиза может протекать разными путями, а всего, в зависимости от источника энергии их выделяют три: аэробный (основной), креатинфосфатный и лактатный.

Для количественной характеристики различных путей ресинтеза АТФ обычно используют несколько критериев.

Читайте также:  Мышцы тазового пояса это

1. Максимальная мощность или максимальная скорость – это наибольшее количество АТФ, которое может образоваться в единицу времени за счет данного пути ресинтеза. Измеряется максимальная мощность в калориях или джоулях, исходя из того что один ммоль АТФ соответствует физиологическим условиям примерно 12 кал или 50 Дж. Поэтому данный критерий имеет размерность кал/мин-кг мышечной ткани или Дж/мин-кг мышечной ткани.

2. Время развертывания – это минимальное время, необходимое для выхода ресинтеза АТФ на свою наибольшую скорость, то есть для достижения максимальной мощности. Этот критерий измеряется в единицах времени.

3. Время сохранения или поддержания максимальной мощности – это наибольшее время функционирования данного пути ресинтеза АТФ с максимальной мощностью.

4. Метаболическая ёмкость – это общее количество АТФ, которое может образоваться во время мышечной работы за счет данного пути ресинтеза АТФ.

В зависимости от потребления кислорода пути ресинтеза делятся на аэробные и анаэробные.

2. Аэробный путь ресинтеза АТФ.

Аэробный путь ресинтеза АТФ иначе называется тканевым дыханием – это основной способ образования АТФ, протекающий в митохондриях мышечных клеток. В ходе тканевого дыхания от окисляемого вещества отнимаются два атома водорода и по дыхательной цепи передаются на молекулярный кислород, доставляемый в мышцы кровью, в результате чего возникает вода. За счет энергии, выделяющейся при образовании воды, происходит синтез молекул АТФ из АДФ и фосфорной кислоты. Обычно на каждую образовавшуюся молекулу воды приходится синтез трех молекул АТФ.

Чаще всего водород отнимается от промежуточных продуктов цикла трикарбоновых кислот (ЦТК). ЦТК – это завершающий этап катаболизма в ходе которого происходит окисление ацетилкофермента А до углекислого газа и воды. В ходе этого процесса от перечисленных выше кислот отнимается четыре пары атомов водорода и поэтому образуется 12 молекул АТФ при окислении одной молекулы ацетилкофермента А.

В свою очередь ацетилкофермент А может образовываться из углеводов, жиров аминокислот, то есть через это соединение в ЦТК вовлекаются углеводы, жиры и аминокислоты.

Скорость аэробного обмена АТФ контролируется содержанием в мышечных клетках A ДФ, который является активатором ферментов тканевого дыхания. При мышечной работе происходит накопление A ДФ. Избыток A ДФ ускоряет тканевое дыхание, и оно может достигнуть максимальной интенсивности.

Другим активатором ресинтеза АТФ является углекислый газ. Избыток этого газа в крови активирует дыхательный центр головного мозга, что в итоге приводит к повышению скорости кровообращения и улучшению снабжения мышцы кислородом.

Максимальная мощность аэробного пути составляет 350-450 кал/мин-кг. По сравнению с анаэробными путями ресинтеза АТФ тканевое дыхание облает более низкими показателями, что ограничено скоростью доставки кислорода в мышцы. Поэтому за счет аэробной пути ресинтеза АТФ могут осуществляться только физические нагрузки умеренной мощности.

Время развертывания составляет 3 – 4 минуты, но у хорошо тренированных спортсменов может составлять 1 мин. Это связано с тем, что на доставку кислорода в митохондрии требуется перестройка практически всех систем организма.

Время работы с максимальной мощностью составляет десятки минут. Это дает возможность использовать данный путь при длительной работе мышц.

По сравнению с другими идущими в мышечных клетках процессами ресинтеза АТФ аэробный путь имеет ряд преимуществ.

1. Экономичность: из одной молекулы гликогена образуется 39 молекул АТФ, при анаэробном гликолизе только 3 молекулы.

2. Универсальность в качестве начальных субстратов здесь выступают разнообразные вещества: углеводы, жирные кислоты, кетоновые тела, аминокислоты.

3. Очень большая продолжительность работы. В покое скорость аэробного ресинтеза АТФ может быть небольшой, но при физических нагрузках она может стать максимальной.

1. Обязательное потребление кислорода, что ограничено скоростью доставки кислорода в мышцы и скоростью проникновения кислорода через мембрану митохондрий.

2. Большое время развертывания.

3. Небольшую по максимальной величине мощность.

Поэтому мышечная деятельность, свойственная большинству видов спорта, не может быть полностью получена этим путем ресинтеза АТФ.

В спортивной практике для оценки аэробного ресинтеза используются следующие показатели: максимальное потребление кислорода (МПК), порог аэробного обмена (ПАО), порог анаэробного обмена (ПАНО) и кислородный приход.

МПК – это максимально возможная скорость потребления кислорода организмом при выполнение физической работы. Чем выше МПК, тем выше скорость тканевого дыхания. Чем тренированнее человек, тем выше МПК. МПК рассчитывают обычно на 1кг массы тела. У людей, не занимающихся спортом МПК 50 мл/мин-кг, а у тренированных людей он достигает 90 мл/мин-кг.

В спортивной практике МПК также используется для характеристики относительной мощности аэробной работы, которая выражается в процентах от МПК. Например, относительная мощность работы, выполняемая с потреблением кислорода 3 л/мин спортсменом, имеющим МПК 6 л/мин, будет составлять 50% от уровня МПК.

ПАО – это наибольшая относительная мощность работы, измеряемая по потреблению кислорода в процентах по отношению к МПК. Большие величины ПАО говорят о лучшем развитии аэробного ресинтеза.

ПАНО – это минимальная относительная мощность работы, также измеренная по потреблению кислорода в процентах по отношению к МПК. Высокое ПАНО говорит о том, что аэробный ресинтез выше в единицу времени, поэтому гликолиз включается при гораздо больших нагрузках.

Кислородный приход – это количество кислорода (сверх дорабочего уровня ), использованное во время выполнения данной нагрузки для обеспечения аэробного ресинтеза АТФ. Кислородный приход характеризует вклад тканевого дыхания в энергообеспечение всей проделанной работы. Кислородный приход часто используют для оценки всей проделанной аэробной работы.

Под влиянием систематических тренировок в мышечных клетках возрастает количество митохондрий, совершенствуется кислородно-транспортная функция организма, возрастет количество миоглобина в мышцах и гемоглобина в крови.

3. Анаэробные пути ресинтеза АТФ.

Анаэробные пути ресинтеза АТФ – это дополнительные пути. Таких путей два креатинфосфатный путь и лактатный.

Креатинфосфатный путь связан с веществом креатинфосфатом . Креатинфосфат состоит из вещества креатина, которое связывается с фосфатной группой макроэргической связью. Креатинфосфата в мышечных клетках содержится в покое 15 – 20 ммоль/кг.

Креатинфосфат обладает большим запасом энергии и высоким сродством с АДФ. Поэтому он легко вступает во взаимодействие с молекулами АДФ, появляющимися в мышечных клетках при физической работе в результате реакции гидролиза АТФ. В ходе этой реакции остаток фосфорной кислоты с запасом энергии переносится с креатинфосфата на молекулу АДФ с образованием креатина и АТФ.

Креатинфосфат + АДФ → креатин + АТФ.

Эта реакция катализируется ферментом креатинкиназой . Данный путь ресинтеза АТФ иногда называют креатикиназным.

Креатинкиназная реакция обратима, но смещена в сторону образования АТФ. Поэтому она начинает осуществляться, как только в мышцах появляются первые молекулы АДФ.

Креатинфосфат – вещество непрочное. Образование из него креатина происходит без участия ферментов. Не используемый организмом креатин, выводится из организма с мочой. У мужчин выделение креатинина с мочой колеблется в пределах 18-32 мг/сутки . кг массы тела, а у женщин – 10-25 мг/сутки . кг (это иесть криатининовый коэффициент). Синтез креатинфосфата происходит во время отдыха из избытка АТФ. При мышечной работе умеренной мощности запасы креатинфосфата могут частично восстанавливаться. Запасы АТФ и креатинфосфата в мышцах называют также фосфагены.

Максимальная мощность этого пути составляет 900 -1100 кал/ мин-кг, что в три раза выше соответствующего показателя аэробного пути.

Время развертывания всего 1 – 2 сек.

Время работы с максимальной скоростью всего лишь 8 – 10 сек.

Главным преимуществом креатинфосфатного пути образования АТФ являются

  • малое время развертывания (1-2 сек);
  • высокая мощность.

Эта реакция является главным источником энергии для упражнений максимальной мощности: бег на короткие дистанции, прыжки метания, подъем штанги. Эта реакция может неоднократно включаться во время выполнения физических упражнений, что делает возможным быстрое повышение мощности выполняемой работы.

Биохимическая оценка состояния этого пути ресинтеза АТФ обычно проводится двумя показателями: креатиновому коэффициенту и алактатному долгу.

Креатиновый коэффициент – это выделение креатина в сутки. Этот показатель характеризует запасы креатинфосфата в организме.

Алактатный кислородный долг – это повышение потребления кислорода в ближайшие 4 – 5 мин, после выполнения кратковременного упражнения максимальной мощности. Этот избыток кислорода требуется для обеспечения высокой скорости тканевого дыхания сразу после окончания нагрузки для создания в мышечных клетках повышенной концентрации АТФ. У высококвалифицированных спортсменов значение алактатного долга после выполнения нагрузок максимальной мощности составляет 8 – 10 литров.

Гликолитический путь ресинтеза АТФ , так же как креатинфосфатный является анаэробным путем. Источником энергии, необходимой для ресинтеза АТФ в данном случае является мышечный гликоген. При анаэробном распаде гликогена от его молекулы под действием фермента фосфорилазы поочередно отщепляются концевые остатки глюкозы в форме глюкозо-1-фосфата. Далее молекулы глюезо-1-фосфата после ряда последовательных реакций превращаются в молочную кислоту. Этот процесс называется гликолиз. В результате гликолиза образуются промежуточные продукты, содержащие фосфатные группы, соединенные макроэргическими связями. Эта связь легко переносится на АДФ с образованием АТФ. В покое реакции гликолиза протекают медленно, но при мышечной работе его скорость может возрасти в 2000 раз, причем уже в предстартовом состоянии.

Максимальная мощность – 750 – 850 кал/мин-кг, что в два раза выше, чем при тканевом дыхании. Такая высокая мощность объясняется содержанием в клетках большого запаса гликогена и наличием механизма активизации ключевых ферментов.

Время развертывания 20-30 секунд .

Время работы с максимальной мощностью – 2 -3 минуты.

Гликолитический способ образования АТФ имеет ряд преимуществ перед аэробным путем:

  • он быстрее выходит на максимальную мощность,
  • имеет более высокую величину максимальной мощности,
  • не требует участия митохондрий и кислорода.

Однако у этого пути есть и свои недостатки :

  • процесс малоэкономичен,
  • накопление молочной кислоты в мышцах существенно нарушает их нормальное функционирование и способствует утомлению мышцы.

Общий итог гликолиза может быть представлен в виде следующих уравнений:

С 6 Н 12 О 6 + АДФ + 2 Н 3 РО 4 С 3 Н 6 О 3 + 2 АТФ + 2 Н 2 О;

[ C 6 Н 10 О 5 ] n + 3 АДФ + 3 Н 3 РО 4 С 3 Н 6 О 3 + [ C 6 Н 10 О 5 ] n _ 1 + 3 АТФ + 2 Н 2 О

Схема анаэробного и аэробного гликолиза

Для оценки гликолиза используют две биохимические методики – измерение концентрации лактата в крови, измерение водородного показателя крови и определение щелочного резерва крови.

Определяют также и содержание лактата в моче. Это дает информацию о суммарном вкладе гликолиза в обеспечение энергией упражнений, выполненных за время тренировки.

Еще одним важным показателем является лактатный кислородный долг. Лактатный кислородный долг – это повышенное потребление кислорода в ближайшие 1 – 1,5 часа после окончания мышечной работы. Этот избыток кислорода необходим для устранения молочной кислоты, образовавшейся при выполнении мышечной работы. У хорошо тренированных спортсменов кислородный долг составляет 20 – 22 л. По величине лактаного долга судят о возможностях данного спортсмена при нагрузках субмаксимальной мощности.

4. Соотношение между различными путями ресинтеза АТФ при мышечной работе. Зоны относительной мощности мышечной работы.

При любой мышечной работе функционируют все три пути ресинтеза АТФ, но включаются они последовательно. В первые секунды работы ресинтез АТФ идет за счет креатинфосфатной реакции, затем включается гликолиз и, наконец, по мере продолжения работы на смену гликолизу приходит тканевое дыхание.

Конкретный вклад каждого из механизмов образования АТФ в энергетическое обеспечение мышечных движений зависит от интенсивности и продолжительности физических нагрузок.

При кратковременной, но очень интенсивной работе (например, беге на 100 м) главным источником АТФ является креатинкиназная реакция. При более продолжительной интенсивной работе ( например на средние дистанции) большая часть АТФ образуется за счет гликолиза. При выполнении упражнений большой продолжительности, но умеренной мощности энергообеспечение мышц осуществляется в основном за счет аэробного окисления.

В настоящее время приняты различные классификации мощности мышечной работы. В спортивной биохимии чаще всего используется классификация базирующаяся на том, что мощность обусловлена соотношением между тремя основными путями ресинтеза АТФ. Согласно этой классификации выделяют четыре зоны относительной мощности мышечной работы: максимальной, субмаксимальной, большой и умеренной.

Максимальная мощность может развиваться при работе продолжительностью 15 – 20 сек. Основной источник АТФ при этой работе – креатинфосфат. Только в самом конце креатинкиназная реакция заменяется гликолизом. Примером физических упражнений, выполняемых в зоне максимальной мощности, является бег на короткие дистанции, прыжки в длину и высоту, некоторые гимнастические упражнения, подъем штанги и некоторые другие. Максимальную мощность при этих упражнениях обозначают как максимальную анаэробную мощность .

Работа в зоне субмаксимальной аэробной мощности имеет продолжительность до 5 минут. Ведущий механизм ресинтеза АТФ – гликолиз. Вначале, пока реакции гликолиза не достигли максимальной скорости, образование АТФ идет за счет креатинфосфата, а в конце в процесс включается тканевое дыхание. Работа в этой зоне характеризуется высоким кислородным долгом – 20-22 л. Примером физических нагрузок в этой зоне мощности является бег на средние дистанции, плавание на средние дистанции, велосипедные гонки на треке, спринтерские конькобежные дистанции и др. Такие нагрузки называют лактатными.

Работа в зоне большой мощности имеет предельную продолжительность до 30 мин. Для работы в этой зоне характерен одинаковый вклад гликолиза и тканевого дыхания. Креатинфосфатный путь участвует только в самом начале работы.. Примером упражнений в этой зоне являются бег на 5000 м, бег на коньках на длинные дистанции, лыжные гонки, плавание на средние дистанции и др. Здесь различают нагрузки либо аэробно-анаэробные, либо анаэробно-аэробные.

Работа в умеренной зоне продолжительностью свыше 30 минут происходит преимущественно аэробным путем. Сюда относят марафонский бег, легкоатлетический кросс, шоссейные велогонки, спортивная ходьба, лыжные гонки на длинные дистанции, турпоходы и др.

В ациклических и ситуационных видах спорта (единоборства, гимнастические упражнения, спортивные игры) мощность выполняемой работы многократно меняется. Например, у футболистов бег с умеренной скоростью (зона большой мощности) чередуется с бегом на короткие дистанции со спринтерской скоростью (зона максимальной или субмаксимальной мощности). В то же время у футболистов бывают такие отрезки игры, когда мощность работы снижается до умеренной.

При подготовке спортсменов необходимо применять тренировочные нагрузки, развивающие путь ресинтеза АТФ, являющийся ведущим в энергообеспечении работы в зоне относительной мощности характерной для данного вида спорта.

Тема: БИОХИМИЧЕСКМЕ СДВИГИ ПРИ МЫШЕЧНОЙ РАБОТЕ.

Читайте также:  Мышцы птицы и их значения

1. Основные механизмы нервно-гуморальной регуляции мышечной деятельности.

Любая физическая работа сопровождается изменениями скорости метаболических процессов. Необходимая перестройка метаболизма во время мышечной деятельности происходит под воздействием нервно-гуморальной регуляции.

Можно выделить следующие механизмы нервно-гуморальной регуляции мышечной деятельности:

  1. При мышечной работе повышается тонус симпатического отдела вегетативной нервной системы, который отвечает за работу внутренних органов и мышц.

В легких под влиянием симпатических импульсов повышается частота дыхания и происходит расширение бронхов. В результате увеличивается легочная вентиляция, что приводит к улучшению обеспечения организма кислородом.

Под влиянием симпатической нервной системы также повышается частота сердечных сокращений, следствием чего является увеличение скорости кровотока и улучшение снабжения органов, в первую очередь мышц, кислородом и питательными веществами.

Симпатическая система усиливает потоотделение, улучшая тем самым терморегуляцию.

Она оказывает замедляющее влияние на работу почек, кишечника. Под влиянием симпатической нервной системы происходит мобилизация жира.

  1. Не менее важную роль в перестройке организма во время мышечной работы выполняют гормоны. Наибольшее значение в биохимическую перестройку при этом вносят гормоны надпочечников.

Мозговой слой надпочечников вырабатывает катехоламины – адреналин и норадреналин. Выделение гормонов мозгового слоя в кровь происходит при различных эмоциях и стрессах. Биологическая роль этих гормонов – создание оптимальных условий для выполнения мышечной работы большой мощности и продолжительности путем воздействия на физиологические функции и метаболизм.

Попадая в кровь, катехоламины дублируют действия симпатических импульсов. Они вызывают повышение частоты дыхания, расширение бронхов. Под действием адреналина повышается частота сердечных сокращений и их сила. Под действием адреналина в организме происходит перераспределение крови в сосудистом русле.

В печени эти гормоны вызывают ускоренный распад гликогена. В жировой ткани катехоламины активизирует липазы, ускоряя тем самым распад жира. В мышцах они активизируют распад гликогена.

Гормоны коркового слоя также активно участвуют в активизации мышечной работы. Их действие заключается в том, что они подавляют действие фермента гексокиназы, чем способствуют накоплению глюкозы в крови. Поскольку эти гормоны не действуют на нервные клетки – это дает возможность питать нервные клетки, поскольку глюкоза для них практический единственный источник энергии. Гормоны – глюкокортикоиды – тормозят анаболические процессы и в первую очередь биосинтез белков. Это дает возможность использовать высвободившиеся молекулы АТФ для работы мышц. Кроме того они стимулируют синтез глюкозы из неуглеводных субстратов.

2. Биохимические изменения в скелетных мышцах.

При выполнении физической работы в мышцах происходит глубокие изменения, обусловленные прежде всего интенсивностью процессов ресинтеза АТФ.

Использование креатинфосфата в качестве источника энергии приводит к снижению его концентрации в мышечных клетках и накоплению в них креатина.

Практически при любой работе для получения АТФ используется мышечный гликоген. Поэтому его концентрация в мышцах снижается независимо от характера работы. При выполнении интенсивных нагрузок в мышцах наблюдается быстрое уменьшение запасов гликогена и одновременное образование и накопление молочной кислоты. За счет накопления молочной кислоты повышается кислотность внутри мышечных клеток. Увеличение содержания лактата в мышечных клетках вызывает также повышением в них осмотического давления. Повышение осмотического давления приводит к тому, что в мышечную клетку из капилляров и межклеточного пространства поступает вода, и мышцы набухают или, как говорят спортсмены, «забиваются».

Продолжительная мышечная работа небольшой мощности вызывает плавное снижение концентрации гликогена в мышцах. В данном случае распад происходит аэробно, с потреблением кислорода. Конечные продукты такого распада – углекислый газ и вода – удаляются из мышечных клеток в кровь. Поэтому после выполнения работы умеренной мощности в мышцах обнаруживается уменьшение содержания гликогена без накопления лактата.

Еще одно важное изменение, возникающее в работающих мышцах – повышение скорости распада белков. Особенно ускоряется распад белков при выполнении силовых упражнений, причем, это затрагивает в первую очередь сократительные белки миофибрилл. Вследствие распада белков в мышечных клетках повышается содержание свободных аминокислот и продуктов их распада – кетокислот и аммиака.

Другими характерным изменением, вызываемым мышечной деятельностью, является снижение активности ферментов мышечных клеток. Одной из причин уменьшения ферментативной активности может быть повышенная кислотность, вызванная появлением в мышцах молочной кислоты.

И наконец, мышечная деятельность может привести к повреждениям внутриклеточных структур – миофибрилл, митохондрий и других биомембран. Так нарушение мембран саркоплазматической цепи ведет к нарушению проведения нервного импульса к цистернам, содержащим ионы кальция. Нарушения целостности сарколеммы сопровождается потерей мышцами многих важных веществ, которые уходят из поврежденной клетки в лимфу и кровь. Нарушается и работа ферментов, встроенных в мембраны. Нарушается работа кальциевого насоса и ферментов тканевого дыхания, расположенных на внутренней поверхности мембран митохондрий.

3. Биохимические сдвиги в головном мозге и миокарде.

Головной мозг. Во время мышечной деятельности в двигательных нейронах коры головного мозга происходит формирование и последующая передача двигательного нервного импульса. Оба эти процесса (формирование и передача нервного импульса) осуществляются с потреблением энергии в виде молекул АТФ. Образование АТФ в нервных клетках происходит аэробно. Поэтому при мышечной работе увеличивается потребление мозгом кислорода из протекающей крови. Другой особенностью энергетического обмена в нейронах является то, что основным субстратом окисления является глюкоза, поступающая с током крови.

В связи с такой спецификой энергоснабжения нервных клеток любое нарушение снабжения мозга кислородом или глюкозой неминуемо ведет к снижению его функциональной активности, что у спортсменов может проявиться в форме головокружения или обморочного состояния.

Миокард. Во время мышечной деятельности происходит усиление и учащение сердечных сокращений, что требует большого количества энергии по сравнению с состоянием покоя. Однако энергоснабжение сердечной мышцы осуществляется главным образом за счет аэробного ресинтеза АТФ. Лишь при ЧСС более 200 уд/мин, включается анаэробный синтез АТФ.

Большие возможности аэробного энергообеспечения в миокарде обусловлены особенностью строения этой мышцы. В отличие от скелетных мышц в миокарде имеется более развитая и густая сеть капилляров, что позволяет извлекать из крови больше кислорода и субстратов окисления. Кроме того, в клетках сердечной мышцы имеется больше митохондрий, содержащих ферменты тканевого дыхания. В качестве источников энергии клетки сердечной мышцы используют и глюкозу, и жирные кислоты, и кетоновые тела, и глицерин. Гликоген миокард сохраняет на «черный день», когда истощаться другие источники энергии.

Во время интенсивной работы сопровождающейся увеличением концентрации лактата в крови, миокард извлекает из крови лактат и окисляет его до углекислого газа и воды.

При окислении одной молекулы молочной кислоты синтезируется до 18 молекул АТФ. Способность миокарда окислять лактат имеет большое биологическое значение. Это дает возможность организму дольше поддерживать в крови необходимую концентрацию глюкозы, что очень существенно для биоэнергетики нервных клеток, для которых глюкоза является почти единственным субстратом окисления. Окисление лактата в миокарде также способствует нормализации кислотно-щелочного баланса, так как при этом в крови снижается концентрация этой кислоты.

4. Биохимические сдвиги в печени.

При мышечной деятельности активируются функции печени, направленные преимущественно на улучшение обеспечения работающих мышц, внемышечными источниками энергии, переносимыми кровью. Ниже описаны наиболее важные биохимические процессы, протекающие в печени во время работы.

1. Под воздействием адреналина повышается скорость распада гликогена с образованием свободной глюкозы. Образовавшаяся глюкоза выходит из клеток печени в кровь, что приводит к возрастанию её концентрации в крови. При этом снижается содержание гликогена. Наиболее высокая скорость распада гликогена наблюдается в печени в начале работы, когда запасы гликогена ещё велики.

2. Во время выполнения физического упражнения клетки печени активно извлекают из крови жир, жирные кислоты, содержание которых в крови возрастает вследствие мобилизации жира из жировых депо. Поступающий в печеночные клетки жир сразу подвергается гидролизу и превращается в глицерин и жирные кислоты. Далее жирные кислоты путем β-окисления расщепляются до ацетилкофермента А, из которого затем образуются кетоновые тела. Кетоновые тела являются важным источником энергии. С током крови они переносятся из печени в работающие органы – миокард и скелетные мышцы. В этих органах кетоновые тела вновь превращаются в ацетилкофермент А, который сразу же аэробно окисляется в цикле трикарбоновых кислот до углекислого газа и воды с выделением большого количества энергии.

3. Еще один биохимический процесс, протекающий в печени во время мышечной работы – это образование глюкозы из глицерина, аминокислот, лактата. Этот процесс идет с затратами энергии молекул АТФ. Обычно такой синтез глюкозы протекает при длительной работе, ведущей к снижению концентрации глюкозы в кровяном русле. Благодаря этому процессу организму удается поддерживать в крови необходимый уровень глюкозы.

4. При физической работе усиливается распад мышечных белков, приводящий к образованию свободных аминокислот, которые далее дезаминируются, выделяя аммиак. Аммиак является клеточным ядом, его обезвреживание происходит в печени, где он превращается в мочевину. Синтез мочевины требует значительного количества энергии. При истощающих нагрузках, не соответствующему функциональному состоянию организма, печень может не справляться с обезвреживанием аммиака, в этом случае возникает интоксикация организма этим ядом, ведущая к снижению работоспособности.

5. Биохимические сдвиги в крови.

Изменения химического состава крови является отражением тех биохимических сдвигов, которые возникают при мышечной деятельности в различных внутренних органах, скелетных мышцах и миокарде.

Биохимические сдвиги, возникающие в крови, в значительной мере зависят от характера работы, поэтому их анализ следует проводить с учетом мощности и продолжительности физических нагрузок.

При выполнении мышечной работы в крови чаще всего обнаруживаются следующие изменения.

1. Изменения концентрации белков в плазме крови. Причин этого две. Во-первых, усиленное потоотделение приводит к уменьшению содержания воды в плазме крови и, следовательно, к ее сгущению. Это вызывает возрастание концентрации веществ, содержащихся в плазме. Во-вторых, вследствие повреждения клеточных мембран наблюдается выход внутриклеточных белков в плазму крови. В этом случае часть белков кровяного русла переходит в мочу, а другая часть используется в качестве источников энергии.

2. Изменение концентрации глюкозы в крови во время работы проходит ряд фаз. В самом начале работы уровень глюкозы возрастает. Глюкоза выходит из печени, где происходит ее образование из гликогена. Кроме того мышцы, имеющие запасы гликогена, на этой стадии в глюкозе из крови остро не нуждаются. Но затем наступает стадия когда гликоген в печени и мышцах заканчивается. Тогда наступает следующая фаза, когда для извлечения энергии используется глюкоза крови. Ну а в конце работы наступает фаза истощения и, как следствие, гипогликемия – снижение концентрации глюкозы в крови.

3. Повышение концентрации в крови лактата наблюдается практически при любой спортивной деятельности, но степень накопления лактата в значительной степени зависит от характера выполняемой работы и тренированности спортсмена. Наибольший подъем уровня молочной кислоты в крови отмечается при выполнении физических нагрузок в зоне субмаксимальной мощности. Так как в этом случае главным источником энергии для работающих мышц является анаэробный гликолиз, приводящий к образованию и накоплению лактата.

Следует помнить, что накопление лактата происходит не сразу, а через несколько минут после окончания работы. Поэтому и измерение уровня лактата нужно проводить через 5 – 7 минут после окончания работы. Если уровень лактата в покое не превышает 1 – 2 ммоль/л, то у высоко-тренированных спортсменов после тренировки он может достигать 20 – 30 ммоль/л.

4. Водородный показатель (рН). При выполнении упражнений субмаксимальной мощности уровень рН может довольно значительно снижаться (на 0,5 ед.)

5. Физические упражнения сопровождаются повышением концентрации свободных жирных кислот и кетоновых тел в крови. Это связано с мобилизацией жира в печени и выходом продуктов этого процесса в кровь.

6. Мочевина. При кратковременной работе концентрация мочевины в крови меняется незначительно, при длительной работе уровень мочевины возрастает в несколько раз. Это связано с усилением метаболизма белков при физических нагрузках.

6. Биохимические сдвиги в моче.

Физические упражнения влияют на физико-химические свойства мочи, сдвиги в которых объясняются существенными сдвигами в химическом составе мочи.

В моче появляются вещества, которые обычно в ней отсутствуют. Эти вещества называют патологическими компонентами. У спортсменов наблюдаются после напряженной работы, следующие патологические компоненты.

1. Белок. Обычно в моче не более 100 мг белка. После тренировки наблюдается значительное выделение мочой белка. Это явление получило название протеинурия. Чем тяжелее нагрузки, тем выше содержание белка . Причиной этого явления, возможно, является повреждение почечных мембран. Однако снижение нагрузок полностью восстанавливает нормальный состав мочи.

2. Глюкоза. В покое глюкоза в моче отсутствует. После завершения тренировки в моче нередко обнаруживается глюкоза. Это обусловлено двумя основными причинами. Первая, избыточное содержание глюкозы в крови при физической работе. Во-вторых нарушение почечных мембран вызывает нарушение процесса обратного всасывания.

3. Кетоновые тела. До работы кетоновые тела в моче не обнаруживаются. После нагрузок с мочой могут выделяться в больших количествах кетоновые тела. Это явление называется кетонурия. Она связана с повышением концентрации кетоновых тел в крови и наращением реабсорбции их почками.

4. Лактат. Появление молочной кислоты в моче обычно наблюдается после тренировок, включающих упражнения субмаксимальной мощности. По выделению лактата с мочой можно судить об общем вкладе гликолиза в энергетическое обеспечение всей работы, выполненной спортсменом за тренировку.

Наряду с влиянием на химический состав мочи физические нагрузки меняют и физико-химические свойства мочи.

Плотность. Объем мочи после тренировок, как правило, меньше, так как большая часть воды уходит с потом. Это сказывается на плотности мочи, которая возрастает. Увеличение плотности мочи связано также с появлением в ней веществ, которые обычно в моче отсутствуют.

По плотности можно рассчитать содержание растворенных химических соединений в отдельных порциях мочи.

Кислотность. Кетоновые тела и молочная кислота, выделяемые с мочой, меняют её кислотность. Обычно рН мочи 5 – 6 ед. После работы он может снизиться до 4 – 4,5 ед.

Чем интенсивнее физические нагрузки – тем значительнее изменения, наблюдаемые в составе мочи и крови.

источник