Меню Рубрики

Формы и режимы сокращения мышц

Харьковская Государственная Академия Физической Культуры

Кафедра гигиены и физиологии человека

по дисциплине: «Физиология человека»

На тему: «Формы и типы мышечных сокращений. Регуляция напряжения, сила и утомление мышцы.»

Выполнил: студент 43 группы заочного отделения

Харьков – 2015 г.

2) Формы и типы мышечных сокращений.

3) Сила и работа мышц.

6) Список используемой литературы

В организме человека по структуре и физиологическим свойствам выделяют 3 типа мышечной ткани:

Все типы мышц обладают некоторыми свойствами:

3. Сократимость – изменение длины или напряжения

4. Способность расслабляться.

В естественных условиях деятельность мышц носит рефлекторный характер. Зарегистрировать электрическую активность мышцы можно с помощью электромиографа. Электромиография используется в спортивной медицине.

Сокращение скелетных мышц возникает в ответ на нервные импульсы, идущие от специальных нервных клеток — мотонейронов. В процессе сокращения в мышечных волокнах возникает напряжение.Напряжение, развиваемое при сокращении, реализуется мышцами по-разному, что и определяет различные формы и типы мышечного сокращения.

Формы и типы мышечных сокращений.

Мышца способна сокращаться как в состоянии покоя, так и в укороченном или в растянутом состоянии. При длине покоя мышца может развить очень высокое напряжение.

Во-первых, потому что оптимальная степень контакта филаментов актина и миозина позволяет создать максимальное количество мостиковых соединений и тем самым активно и сильно развить напряжение сократительного компонента.

Во-вторых, потому что эластичный компонент мышцы уже как пружина предварительно растянут, уже создано дополнительное напряжение. Активно развитое напряжение сократительного компонента суммируется с упругим напряжением, накопленным в эластичном компоненте, и реализуется в одно высокое, результирующее напряжение мышцы.

Последующее предварительное растяжение мышцы, которое значительно превосходит состояние при длине покоя, приводит к недостаточному контакту филаментов актина и миозина. При этом заметно ухудшаются условия для развития значительного и активного напряжения саркомеров.

Тем не менее, при большом предварительном растягивании задействованных мышц, например, при широком замахе в метании копья, спортсмены достигают более высоких результатов, чем без замаха. Этот феномен объясняется тем, что увеличение предварительного напряжения эластичного компонента превосходит снижение активного развития напряжения сократительного компонента. Различают разные формы и типы мышечного сокращения.

При динамической форме мышца изменяет свою длину; статической – напряжение (но не меняет длину); ауксотонической – длину и напряжение.

Существуют такие типы сокращения: изометрическое, изокинетическое и смешанное.

За счет целенаправленной силовой тренировки (метод многократной субмаксимальной нагрузки) увеличивается поперечное сечение и количество, как сократительных элементов (миофибрилл), так и других соединительно-тканных элементов мышечного волокна (митохондрии, фосфатные и гликогенные депо и т.д.).

Правда, этот процесс приводит к прямому увеличению сократительной силы мышечных волокон, а не к немедленному увеличению их поперечного сечения. Лишь после того, как это развитие достигнет определенного уровня, продолжение тренировок по развитию силы может способствовать увеличению толщины мышечных волокон и тем самым увеличению поперечного сечения мышцы (гипертрофия).

Таким образом, увеличение поперечного сечения мышцы происходит за счет утолщения волокон (увеличение саркомеров в поперечном сечении мышцы), а не за счет увеличения числа мышечных волокон, как часто ошибочно предполагают.

Количество волокон в каждой отдельно взятой мышце обусловлено генетически, и, как показывают научные исследования, это количество нельзя изменить при помощи силовой тренировки. Интересно, что люди значительно отличаются по количеству мышечных волокон в мышце.

Спортсмен, в бицепсе которого содержится большое количество волокон, имеет лучшие предпосылки увеличить поперечное сечение этой мышцы тренировкой, направленной на утолщение волокон, чем спортсмен, бицепс которого состоит из относительно небольшого количества волокон. У наиболее способных представителей видов спорта, требующих максимальной и скоростной силы, при планомерной и настойчивой тренировке доля мышц к общей массе тела увеличивается до 60% и более процентов.

Сила скелетной мышцы, как уже отмечалось, зависит главным образом от ее поперечного сечения, т. е. от количества и толщины миофибрилл, параллельно расположенных в волокнах, и складывающегося из этого количества возможных мостиковых соединений между филаментами миозина и актина.

Таким образом, если спортсмен увеличивает поперечник мышечных волокон, то он увеличивает и свою силу. Однако сила и мышечная масса увеличиваются не в одинаковой мере. Если мышечная масса увеличивается в два раза, то сила увеличивается, примерно, в три раза. У женщин сила составляет 60-100 Н/см2 (6-10 кг/ см2, a y мужчин — 70-120 Н/см2. Большой разброс этих показателей (отдача силы на 1 см2 площади поперечного сечения) объясняется разными факторами, как зависящими, так и не зависящими от тренировки, например, внутримышечной и межмышечной координацией, энергетическими запасами и строением волокна.

При возбуждении мышц тонкие нити актина вдвигаются с обеих сторон между толстыми нитями миозина. Происходит сокращение мышцы, уменьшение ее длины. Поскольку каждая миофибрилла состоит из большего числа (n) последовательно расположенных саркомеров, то величина и скорость изменения длины мышцы в n раз больше, чем у одного саркомера.

Сила тяги, развиваемая миофибриллой, состоящей из n последовательно расположенных саркомеров, равна силе тяги одного саркомера. Эти же самые n саркомеров, соединенные параллельно (что соответствует большому числу миофибрилл), дают n-кратное увеличение в силе тяги, но скорость изменения длины мышцы такая же, как скорость сокращения одного саркомера.

Поэтому увеличение физиологического поперечника мышцы приводит к увеличению ее силы, но не изменяет скорости ее укорочения, и наоборот, увеличение длины мышцы приводит к увеличению скорости сокращения, но не влияет на ее силу. Мы говорим: короткие мышцы — сильные, длинные мышцы — быстрые.

Сила и работа мышц.

Силу мышц определяют по максимальному напряжению, которое она может развить в условиях изометрического сокращения или при поднятии максимального груза. Для измерения силы мышцы определяют тот максимальный груз, который она в состоянии поднять.

Сила мышц при прочих равных условиях зависит не от длины, а от ее поперечного сечения. Чтобы иметь возможность сравнивать силу разных мышц, максимальный груз, который мышца в состоянии поднять, делят на число квадратных сантиметров ее поперечного сечения. Абсолютная сила мышц выражается в кг на 1 см 2 .

Поднимая груз, мышца выполняет механическую работу, которая измеряется произведением массы груза на высоту его подъема и выражается в килограммометрах. Мышца выполняет наибольшую работу при средних нагрузках.

Временное понижение работоспособности мышцы, наступающее в результате работы и исчезающее после отдыха, называется утомлением. Последнее представляет собой сложный физиологический процесс, связанный, прежде всего, с утомлением нервных центров. Определенную роль в развитии утомления играет накопление в работающей мышце продуктов обмена (молочная кислота и др.) и постепенное истощение энергетических запасов.

В покое, вне работы, мышцы полностью не расслаблены, а сохраняют некоторое напряжение, называемое тонусом. Внешним выражением тонуса является определенная степень упругости мышц. Тонус мышц обусловлен непрерывно поступающими нервными импульсами из мотонейронов спинного мозга. Тонус скелетных мышц играет важную роль для поддержания определенного положения тела в пространстве, сохранения равновесия и упругости мышц.

Не нашли то, что искали? Воспользуйтесь поиском:

источник

Существует два вида мышечных сокращений – одиночное и тетаническое. Одиночное мышечное сокращение является единственным видом сокращений для сердечной мышцы, а в скелетной мускулатуре оно носит искусственную этиологию и возникает в ответ на одиночный электрический сигнал и возникновение потенциала действия (ПД). Такое сокращение, длящееся » 100 мс, имеет форму волны (см. рис.) и включает три фазы: 1 – латентный период (от 2-3 до 10 мс), длящийся от момента нанесения раздражения до начала сокращения, 2 – фаза укорочения или сокращения (40-50 мс) и 3 – фаза расслабления (около 50мс). В естественных условиях импульсы поступают не одиночно, а сериями не менее 15-50 имп/с, на что мышца отвечает возникновением тетанического сокращения (тетануса). В его основе лежит явление суммации нескольких одиночных сокращений. В зависимости от частоты импульсов различают зубчатый и гладкий тетанус.

Рисунок 5 — Виды мышечных сокращений:

А — фазы одиночного сокращения; Б — одиночное и тетанические сокращения

Зубчатый тетанус (неполный) возникает в том случае, когда каждый последующий импульс приходит в фазу расслабления мышцы.

Если частота раздражения выше, и каждый последующий импульс приходит в фазу укорочения мышцы, то происходит полная суммация, и тетаническое сокращение носит слитный характер – гладкий тетанус (полный).

Увеличение ответа при действии субмаксимальных раздражителей до определенного (максимального) уровня происходит за счет вовлечения в процесс возбуждения новых, не задействованных ранее, волокон. В случае дальнейшего возрастания раздражения (сверхмаксимальный уровень), ответ уже не увеличивается, и наоборот, при очень сильных раздражителях (5-10 и более порогов), можно достичь пессимального ответа.

В целостном организме мотонейроны посылают пачки потенциалов действия к двигательным единицам, которые в ответ сокращаются тетанически. Скелетные мышцы находятся в состоянии постоянного тонуса вследствие постоянной фоновой импульсации из моторных зон ЦНС.

Работа мышцы (А) – произведение груза (F) на расстояние (h). А = F*h, или А = F*dl, где dl – величина укорочения мышцы.

Относительная сила мышцы определяет максимальный груз, который мышца способна поднять. Данная величина гораздо более зависит от толщины мышцы, чем от ее длины.

Сила сокращения мышц определяется количеством вовлеченных в процесс сокращения двигательных единиц. Абсолютная сила – это отношение относительной силы к площади поперечного сечения мышцы, выраженной в см 2 . Например, абсолютная сила бицепса составляет 11,9 кг∕см 2 , икроножной мышцы – 5,9 кг∕см 2 .

Для оценки функциональной активности мышц говорят об их тонусе и фазических сокращениях.

Тонус – состояние длительного непрерывного напряжения.

Фазическими сокращениями мышцы называют кратковременное укорочение мышцы, сменяющееся ее расслаблением.

Величина сокращения (степень укорочения) мышцы зависит от ее морфологических свойств и физиологического состояния. Чем больше толщина мышцы, тем больший груз она может поднять при своем сокращении. Длинные мышцы сокращаются на большую величину, чем короткие. Умеренное растяжение мышцы увеличивает ее сократительный эффект, при сильном растяжении сокращение мышцы ослабевает.

Правило средних нагрузок: максимальная работа мышц осуществляется при средних, а не максимальных величинах нагрузки, так как

при более высоких нагрузках быстро развивается утомление.

Режимы мышечных сокращений:

1) изотоническое – сокращение, при котором происходит укорочение мышечных волокон, но сохранятся то же напряжение (например, при поднятии груза);

2) изометрическое – сокращение, при котором длина мышечных волокон не меняется, но увеличивается напряжение в ней (например, при сопротивлении давлению);

3) ауксотоническое – сокращение, при котором меняется и напряжение, и длина мышцы.

Сила сокращения мышц определяется числом активных мышечных волокон, участвующих в сокращении, частотой нервных импульсов и наличием синхронизации активности отдельных мышечных волокон во времени. Даже в покое скелетные мышцы редко бывают полностью расслабленными. Обычно в них сохраняется некоторое напряжение – тонус. Тонус мышц увеличивается после тяжелых физических упражнений и во время психоэмоционального напряжения.

При регулярных физических тренировках количество мышечных волокон не меняется, но увеличивается их диаметр за счет увеличения количества миофибрилл в волокнах.

Мышечная работа связана со значительными энергетическими затратами и, следовательно, требует повышенного притока кислорода. Это достигается путем активизации деятельности органов дыхательной и сердечно-сосудистой систем. Усиление обменных процессов при мышечной работе приводит к необходимости усиленного выделения продуктов обмена, а, соответственно, усиленной деятельности почек и потовых желез. Следовательно, физические нагрузки повышают деятельность физиологических систем, оказывают стимулирующее влияние на двигательную систему, приводят к совершенствованию двигательных навыков, развитию психических функций. При гиподинамии у детей страдают обменные процессы, снижается иммунитет, работоспособность, в том числе и умственная.

Утомляемость мышцы зависит от снабжения ее кислородом и кровью. КПД использования О2 мышцей составляет 20-25 %, а по мере тренированности может достигать 30 %.

В каждой мышце различают множество двигательных, или моторных единиц – определенное число мышечных клеток, иннервируемых одной нервной клеткой, причем каждый миоцит имеет свое нервное окончание.

Среди моторных единиц различают: быстрые, в состав которых входит в среднем около 50, и медленные – от нескольких сотен до тысяч мышечных клеток.

Типы нервных волокон:

1) медленные, неутомляемые (красные, статические, тонические) — это тонкие, богатые кровеносными сосудами и миоглобином мышцы, во время работы проявляют большую силу, долго не утомляются, но скорость их сокращений небольшая. Например, они сохраняют вертикальную статику, удерживают в определенном положении отдельные части тела, т.е. осуществляют опорную функцию. К ним также относятся наружные мышцы глазного яблока. Медленные фазические сокращения обеспечивают тонус мышц, и поэтому такие сокращения называются тоническими. Они необходимы для поддержания равновесия в статике и динамике. Медленные мышечные клетки составляют основную массу двигательных единиц. В них много миоглобина и миозина, где происходит окисление. Такие мышцы имеют красный цвет и мало утомляются.

2) быстрые, легко утомляемые (белые, динамические, фазические): они имеют толстые мышечные пучки, меньше кровеносных сосудов и миоглобина, скорость сокращений их велика так же, как и утомляемость. Уступая в силе, они способны производить разнообразные мелкие быстрые движения. Быстрые фазические аэробные мышцы немного бледнее, поскольку в них меньше миоглобина, но сохраняется еще достаточно большое количество миозина, а следовательно, интенсивно протекают процессы окисления. В таких мышцах утомление развивается быстрее, чем в выше описанных. По количеству мышечных клеток в моторной единице быстрые фазические мышцы занимают второе место после медленных. Анаэробные мышцы обеспечивают самые быстрые сокращения. В них мало миоглобина и миозина. Клетки, входящие в состав быстрых анаэробных мышц имеют белый цвет. В таких мышцах протекает анаэробный гликолиз, поэтому, в результате накопления недоокисленных продуктов (молочной кислоты), развивается кислородный долг, и как следствие, самое быстрое утомление. Примером таких мышц могут служить мышцы пальцев рук и глаза.

3) быстрые, устойчивые к утомлению (промежуточные).

Все три типа волокон могут содержаться в одной и той же мышце, и соотношение их числа определяется в значительной степени наследственностью. Например, в четырехглавой мышце бедра человека процент медленных волокон может составлять от 40 до 98 %. Чем больше медленных волокон, тем больше мышца приспособлена к работе на выносливость. И наоборот, люди с высоким процентом быстрых сильных волокон более способны к работе, требующей большой силы и скорости сокращения мышц.

Читайте также:  Упражнения для мышц спины отвечающих за осанку

Сила сокращения мышц определяется числом активных мышечных волокон, участвующих в сокращении, частотой нервных импульсов и наличием синхронизации активности отдельных мышечных волокон во времени. Даже в покое скелетные мышцы редко бывают полностью расслабленными. Обычно в них сохраняется некоторое напряжение – тонус. Тонус мышц увеличивается после тяжелых физических упражнений и во время психоэмоционального напряжения.

источник

Если мышцу стимулировать коротким электрическим импульсом, спустя небольшой латентный период происходит ее сокращение. Такое сокращение называется «одиночное сокращение мышцы». Одиночное мышечное сокращение длится около 10-50 мс, причем оно достигает максимальной силы через 5-30 мс.

Каждое отдельное мышечное волокно подчиняется закону «все или ничего», т. е. при силе раздражения выше порогового уровня происходит полное сокращение с максимальной для данного волокна силой, а ступенчатое повышение силы сокращения по мере увеличения силы раздражения невозможно. Поскольку смешанная мышца состоит из множества волокон с различным уровнем чувствительности к возбуждению, сокращение всей мышцы может быть ступенчатым в зависимости от силы раздражения, при этом при сильных раздражениях происходит активация глубжележащих мышечных волокон.

Однократное электрическое раздражение (рис. 1, вверху) ведет к единичному мышечному сокращению (рис. 1, внизу). Два близко друг за другом следующих раздражения накладываются друг на друга (это называется «суперпозиция», или суммация сокращений), что ведет к более сильному мышечному ответу, близкому к максимальному. Серия часто повторяющихся электрических раздражений вызывает возрастающие по силе мышечные сокращения, в результате чего не происходит должного расслабления мышцы. Если частота электрических импульсов выше частоты слияния, то единичные раздражения сливаются в одно и вызывают тетанус мышцы (тетаническое сокращение) — устойчивое достаточно длительное напряжение сокращенной мышцы.

Выделяют различные функциональные формы мышечных сокращений (рис. 2).

  • При изотоническом сокращении мышца укорачивается, однако ее внутреннее напряжение (тонус!) остается неизменным во всех фазах рабочего цикла. Типичным примером изотонического мышечного сокращения является динамическая мышечная работа сгибателей и разгибателей без существенных изменений внутримышечного напряжения, например подтягивание.
  • При изометрическом сокращении мышечная длина не изменяется, а сила мышцы проявляется в повышении ее напряжения. Типичным примером изометрического сокращения является статическая мышечная активность при поднимании тяжестей (удерживание штанги).
  • Чаще всего наблюдаются комбинированные варианты сокращения мышц. Например, комбинированное сокращение, при котором мышцы сначала сокращаются изометрически, а затем изотонически, как при поднятии тяжести, называют удерживающим сокращением.
  • Установочным (изготовочным) называют сокращение, при котором, наоборот, после начального изотонического сокращения следует изометрическое. Примером является ротационное движение руки с рычагом — затягивание винта с помощью гаечного ключа или отвертки.
  • Различные формы мышечных сокращений выделяют для их описания и систематизации. На самом деле в большинстве динамических спортивных движений происходит как укорочение мышцы, так и повышение напряжения (тонуса) мышц — ауксотонические сокращения.

Использованные здесь термины нетипичны для русской литературы по мышечной активности. В отечественной литературе принято выделять следующие типы сокращений.

  • Концентрическое сокращение — вызывающее укорачивание мышцы и перемещение места прикрепления ее к кости, при этом движение конечности, обеспечиваемое сокращением данной мышцы, направлено против преодолеваемого сопротивления, например силы тяжести.
  • Эксцентрическое сокращение — возникает при удлинении мышцы во время регулирования скорости движения, вызванного другой силой, или в ситуации, когда максимального усилия мышцы не хватает для преодоления противодействующей силы. В результате движение происходит в направлении воздействия внешней силы.
  • Изометрическое сокращение — усилие, противодействующее внешней силе, при котором длина мышцы не изменяется и движения в суставе не происходит.
  • Изокинетическое сокращение — сокращение мышцы с одинаковой скоростью.
  • Баллистическое движение — быстрое движение, включающее: а) концентрическое движение мышц-агонистов в начале движения; б) инерционное движение во время минимальной активности; в) эксцентрическое сокращение для замедления движения.

источник

Режимы работы мышц( изотонические , изометрические и ауксометрические ).

Виды работы мышц и режимы мышечного сокращения

Биомеханика мышц

Различают два вида работы мышц:

· статическая (звенья ОДА фиксированы, движение отсутствует);

· динамическая (звенья ОДА перемещаются относительно друг друга).

Различают три режима мышечного сокращения:

· изометрический – режим мышечного сокращения, при котором момент силы мышцыравен моменту внешней силы(длина мышцы не изменяется). Изометрический режим соответствует статической работе.

· преодолевающий(концентрический) – режим мышечного сокращения, при котороммомент силы мышцы больше момента внешней силы (длина мышцы уменьшается).

· уступающий (эксцентрический) – режим мышечного сокращения, при котором момент силы мышцы меньше момента внешней силы (длина мышцы увеличивается).

Преодолевающий и уступающий режимы соответствуют динамической работе. Тренировка с использованием различных режимов мышечного сокращения может привести к различным тренировочным эффектам. Так, использование уступающего режима мышечного сокращения по сравнению с преодолевающим, приводит к большей гипертрофии скелетных мышц.

Типы мышечных сокращений. По способу укорочения мышц различают три типа мышечных сокращений:

1) изотоническое, при котором волокна укорачиваются при постоянной внешней нагрузке, в реальных движениях проявляется редко (так как мышцы укорачиваясь вместе с тем меняют своё напряжение);

2) изометрическоеэто тип активации, при котором мышца развивает напряжение без изменения своей длины. На нём построена так называемая статическая работа двигательного аппарата человека. Например, в режиме изометрического сокращения работают мышцы человека, который подтянулся на перекладине и удерживает своё тело в этом положении;

3) ауксотоническое или анизотоническоеэто режим, при котором мышца развивает напряжение и укорачивается. Именно этот тип мышечных сокращений обеспечивает выполнение двигательных действий человека.

У анизотонического сокращения две разновидности сокращения мышцы: в преодолевающем и уступающем режимах.

В преодолевающем режиме мышца укорачивается в результате сокращения (например, икроножная мышца бегуна укорачивается в фазе отталкивания).

В уступающем режиме мышца растягивается внешней силой (например, икроножная мышца спринтера при взаимодействии ноги с опорой в фазе амортизации).

На рисунке 1 изображена динамика работы мышцы в преодолевающем и уступающем режимах.

Правая часть кривой отображает закономерности преодолевающей работы, при которой возрастание скорости сокращения мышцы вызывает уменьшение силы тяги.

В уступающем режиме наблюдается обратная картина: увеличение скорости растяжения мышцы сопровождается увеличением силы тяги (что является причиной многочисленных травм у спортсменов, например, разрыв ахиллова).

При скорости, равной нулю, мышцы работают в изометрическом режиме.

Для движения звена в суставе под действием мышечных сил важны не сами силы, а создаваемые ими моменты сил, поскольку движение звена – это ни что иное, как вращение относительно оси, проходящей через сустав. Поэтому разновидности работы мышц можно выразить в терминах моментов сил: если отношение момента внутренних сил к моменту внешних рано единице, режим сокращения будет изометрическим, если больше единицы – преодолевающим, если меньше единицы – уступающим.

Групповое взаимодействие мышц. Существует два вида группового взаимодействия мышц: синергизм и антагонизм.

Мышцы-синергисты перемещают звенья тела в одном направлении. Например, в сгибании руки в локтевом суставе участвуют двуглавая мышца плеча, плечевая и плечелучевая мышцы. В результате синергического взаимодействия мышц увеличивается результирующая сила действия.

Мышцы-антагонисты имеют разнонаправленное действие: если одна из них выполняет преодолевающую работу, то другая – уступающую. Мышцы обеспечивают возвратно-вращательные движения звеньев тела, поскольку каждая из них работает только на сокращение; высокую точность двигательных действий, так как звено необходимо не только привести в движение, но и затормозить в нужный момент. Антагонисты состоят из пары: агонист (сгибатель) – антагонист (разгибатель).

Мощность и эффективность мышечного сокращения. По мере увеличения скорости мышечного сокращения сила тяги мышцы, функционирующей в преодолевающем режиме, снижается по гиперболическому закону (см. рис. 1). Известно, что механическая мощность равна произведению силы на скорость (N = F • V). Существует сила и скорость, при которых мощность мышечного сокращения наибольшая; этот режим возникает, когда и сила, и скорость составляют примерно 30 % от максимально возможных величин.

Накопление энергии упругой деформации в растянутых мышцах и сухожилиях. Когда сокращению мышц предшествует фаза растяжения, производимые силы, мощность и работа достигают больших величин по сравнению с сокращением без предварительного растяжения. После растяжения скорость сокращения увеличивается за счёт скорости восстановления упругих компонентов мышцы.

Растяжение мышечно-сухожильной системы позволяет также накапливать и использовать энергию упругой деформации. Было подсчитано, что ахиллово сухожилие растягивается на 18 мм во время бега со средней скоростью, при этом накапливается энергия в 42 Дж. Нелинейная зависимость между величиной растяжения и накапливаемой энергией показывает, что при больших растяжениях накапливается больше энергии, чем при малых. Эластичное растяжение внесёт значительный вклад в мышечную деятельность, только если за активным мышечным растяжением немедленно последует преодолевающий режим сокращения мышцы. Более высокая результативность прыжка с подседом по отношению к прыжку из статической позы показывает преимущество предварительного растяжения мышц.

Дата добавления: 2015-05-09 ; Просмотров: 1384 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

источник

Классификация мышечных тканей, их физиологические свойства.

Физиологические особенности гладких мышц.

Структура мышечного волокна. Теория сокращения мышц (скольжение нитей). Расслабление и утомление мышц. Тренировка. Гипертрофия и атрофия мышц.

Композиция (состав мышц).

Сила и работа мышечного волокна. Двигательные единицы.

Формы и типы мышечного сокращения. Режимы сокращения мышц. Контрактура.

Классификация мышечных тканей, их физиологические свойства.

ФИЗИОЛОГИЯ ВОЗБУДИМЫХ ТКАНЕЙ

Тема: Физиология мышц

План лекции:

б. Классификация гладких мышц;

в. Сокращение гладкой мышцы;

г. Стресс-релаксация (пластичность) гладкой мышцы;

д. Рост гладкой мышцы и ее чувствительность к физиологически активным веществам.

Мышечные ткани — ткани различного происхождения и строения, для которых ведущей функцией является сократимость, а основными органеллами — миофибриллы.

В организме человека по структуре и физиологическим свойствам выделяют 3 типа мышечной ткани:

1. Поперечно-полосатую (скелетную).

Поперечно-полосатая (скелетная) мышечная ткань является произвольной возбудимой тканью. Она формирует скелетные мышцы, мышцы ротовой полости, верхней трети глотки, наружные сфинктеры мочеиспускательного канала и прямой кишки. Тканевыми элементами служат мышечные волокна — симпласты, которые содержат 4 элемента, обеспечивающих сократительную функцию мышц:

а) миофибриллы, образованные параллельно ориентированными нитями актина и миозина;

б) тропонин-тропомиозин регулирующий комплекс (управляет актом сокращения);

в) саркоплазматический ретикулум, образующий систему T-трубочек и L-каналов, которые содержат ионизированный кальций, запускающий сокращение;

г) систему энергетического обеспечения (митохондриальные комплексы).

Скелетные мышцы обеспечивают сохранение позы, взаимное расположение частей тела и перемещение тела в пространстве, дыхание, прием пищи.

Гладкомышечная ткань является непроизвольно возбудимой. Она формирует мышечные оболочки внутренних органов, все внутренние сфинктеры, входит в состав стенки сосудов. Тканевым элементом является гладкомышечная клетка — миоцит веретеновидной или звездчатой формы. Сократительные элементы представлены:

а) миозиновыми нитями, проходящими вдоль оси клетки и актиновыми нитями, образующими 3-мерную сеть;

б) слабо развитым тропонин-тропомиозиновым комплексом;

в) не развитым эндоплазматическим ретикулумом, (необходимый для инициирования мышечного сокращения ионизированный кальций поступает из внешней среды клетки);

г) системой энергетического обеспечения.

Гладкие мышцы обеспечивают перистальтику желудка, кишечника, мочеточника, маточной трубы, тонус кровеносных и лимфатических сосудов, опорожнение кишечника, мочевого пузыря.

Сердечная мышечная ткань (миокард). Сочетает в себе черты скелетной и гладкомышечной ткани. Непроизвольно возбудимая ткань, обладающая собственной ритмической активностью. Тканевым элементом служат вытянутые клетки — кардиомиоциты, которые при помощи нексусов объединены в функциональные волокна. Среди кардиомиоцитов есть атипичные клетки, образующие проводящую систему. Сократительные элементы клетки представлены:

а) миофибриллярными комплексами, как у скелетных мышц;

б) развитым тропонин-тропомиозиновым комплексом;

в) сочетанным поступлением кальция как из внешней среды, так и из саркоплазматического ретикулума;

г) системой энергетического обеспечения.

Благодаря сокращениям сердечной мышцы, осуществляется циркуляция крови по сердечно-сосудистой системе.

В функциональном отношении различают фазные мышечные волокна (обеспечивают движения, связанные с перемещением тела в пространстве) и тонические мышечные волокна (обеспечивают длительно протекающие сократительные процессы, например, сохранение позы). В фазных волокнах генерируется потенциал действия, который и распространяется по мембране. В тонических волокнах возбуждение возникает градуально в зависимости от силы стимула. Фазные мышечные волокна в свою очередь подразделяются на быстрые и медленные мышечные волокна. Различия между ними заключаются в:

Ø длительности сокращения,

Ø силе сокращения (быстрые обладают большей силой сокращения),

Ø времени наступления утомления (медленные менее утомляемы).

Количество медленных и быстрых мышечных волокон в разных мышцах неодинаково и у разных людей оно тоже различно. Соотношение мышечных волокон генетически запрограммировано. Переход быстрых мышечных волокон в медленное и, наоборот, в течение жизни не происходит.

Все типы мышц обладают некоторыми свойствами:

3. Сократимость – изменение длины или напряжения.

4. Способность расслабляться.

В естественных условиях деятельность мышц носит рефлекторный характер. Зарегистрировать электрическую активность мышцы можно с помощью электромиографа. Электромиография используется в спортивной медицине.

2. Формы и типы мышечного сокращения.

Различают несколько форм и типов мышечных сокращений.

1. Динамическая форма мышечного сокращения. При таком типе сокращений изменяется длина мышцы, но не изменяется напряжение. Эта форма включает два типа:

а) Изотонический тип или концентрационный (мышца укорачивается, но не изменяет своего напряжения). Например, ходьба.

б) Эксцентрический тип. Если нагрузка на мышцу больше, чем ее напряжение, то мышца растягивается. Например, при опускании тяжелого предмета.

2 Статическая форма мышечного сокращения. Эта форма наблюдается при поддержании позы или преодолении силы земного притяжения.

Данная форма включает один тип мышечного сокращения – изометрический. При изометрическом сокращении мышца изменяет свое напряжение, но не изменяет длины.

Читайте также:  Упражнения для мышц спины после травмы позвоночника

3. Форма ауксотонического сокращения или смешанная.

Деление на формы и типы мышечных сокращений является условным т.к. все сокращения являются смешанными. Однако преобладает какой-то один тип.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась — это был конец пары: «Что-то тут концом пахнет». 8530 — | 8116 — или читать все.

193.124.117.139 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Характеристики процесса сокращения определяются многими факторами, но, прежде всего, условиями в которых происходит раздражение и характеристиками раздражителя: его силой и частотой.

Типы мышечного сокращения.

В зависимости от условий, в которых происходит сокращение, различают два его типа – изотоническое и изометрическое.

Если внешняя нагрузка меньше, чем напряжение сокращающейся мышцы, то мышца укорачивается и вызывает движение. Это концентрический тип сокращения. Поскольку в экспериментальных условиях при электрическом раздражении укорочение мышцы происходит при постоянном мышечном напряжении, равном внешней нагрузке, этот тип сокращения называют также изотоническим (равное напряжение). Другое название концентрического сокращения –миометрическое.

Если внешняя нагрузка больше, чем напряжение, развиваемое мышцей во время сокращения, то такая мышца растягивается (удлиняется) при сокращении. Это эксцентрический, или плиометрический, тип сокращения.

Концентрический и эксцентрический типы сокращения, т.е. сокращения, при которых мышца изменяет свою длину, относятся к динамическойформе сокращения, то есть такому сокращению, при котором происходит перемещение груза в пространстве.

Сокращение мышцы, при котором она развивает напряжение, но не изменяет своей длины, называется изометрическим (равная длина). Это статическая форма сокращения. Она возникает в двух случаях: либо когда внешняя нагрузка равна напряжению, развиваемому мышцей при сокращении, либо когда внешняя нагрузка превышает напряжение мышцы, но отсутствуют условия для растяжения мышцы под влиянием этой внешней нагрузки.

Формы и типы мышечного сокращения.

Форма сокращения Тип сокращения Функция Внешняя нагрузка Внешняя работа
Динамическая Концентрический или миомет-рический или изотонический Эксцентрический или плиомет-рический. Ускорение Замедление Меньше чем напряже-ние мышцы. Больше чем напряже-ние мышцы. Положительная Отрицательная
Статическая Изометрический Фиксация Равна напряжению мышцы Равна нулю.

При динамических формах сокращения мышца производит внешнюю работу, которая при концентрическом сокращении – положительная, а при эксцентрическом – отрицательная. Величина работы в обоих случаях может быть определена как произведение внешней нагрузки (поднятого веса) на пройденное расстояние. При изометрическом сокращении “расстояние” равно нулю, и, согласно физическому закону, в этом случае мышца не производит никакой работы. Однако с физиологической точки зрения ясно, что изометрическое сокращение требует энергии и может быть очень утомительным. В этом случае “работа” может быть определена как произведение напряжения мышцы на время ее сокращения (т. е. эквивалентно импульсу силы в физике).

В реальных условиях деятельности мышц практически не встречается чисто изометрическое или чисто изотоническое сокращение. В частности, при осуществлении движений внешняя нагрузка на сокращающиеся мышцы изменяется хотя бы уж потому, что изменяются механические условия их действия (плечи действия сил и угол их приложения). Следовательно, такое сокращение мышц уже не является чисто изотоническим, т.е. с равной нагрузкой. Чисто изометрическое сокращение мышцы также вряд ли может быть, так как благодаря наличию упругих образований, через которые передается ее напряжение, возможно некоторое их растяжение, а следовательно, укорочение мышцы. Даже в экспериментальных условиях, когда сухожилия мышцы фиксированы, напряжение собственных сократительных элементов передается упругим (растяжимым) пассивным элементам мышцы, вызывая некоторое их растяжение, в результате чего происходит укорочение собственно сократительных ее компонентов. Смешанную форму сокращения, при которой изменяется и длина и напряжение мышцы, называют ауксотонической.

В период относительного покоя скелетные мышцы полностью не расслабляются и сохраняют умеренную степень напряжения. Умеренную степень напряжения мышцы в состоянии покоя называют мышечным тонусом. Причиной мышечного тонуса являются поступающие к мышце редкие нервные импульсы от мотонейронов спинного мозга, которые попеременно возбуждают различные нейромоторные единицы. Ритмическая активность мотонейронов поддерживается за счет расположенных выше нервных центров, а также нервных импульсов, поступающих от проприорецепторов мышц.

Режимы сокращения. Характер сокращения скелетной мышцы зависит от частоты раздражения (или от частоты поступления нервных импульсов к мышечному волокну). Различают одиночное и тетаническое сокращение мышц.

Одиночное мышечное сокращение и его фазы. Раздражение мышцы или иннервирующего ее двигательного нерва одиночным стимулом вызывает одиночное мышечное сокращение. При медленном ритме раздражения (до 5 раз в 1 сек) следующие друг за другом импульсы разделены интервалом превышающем длительность одиночного сокращения. Следовательно, мышца в промежутке между двумя раздражениями успевает сократиться и расслабиться. Это позволяет записать ряд одиночных окращений,

разделенных друг от друга паузой (Рис. 9) Одиночные сокращения возможны так Рис. 9. Регистрация одиночного сокращения.

как за время, проходящее между двумя последовательными раздражениями, Са 2+ АТФ-азы цистерн ретикулума успевают полностью вернуть обратно ионы кальция, выбрасываемые из цистерн в момент возбуждения мышечного волокна.

Если запись кривой одиночного мышечного сокращения производят на быстровращающемся кимографе, можно отчетливо выделить его фазы. Сокращение начинается не тотчас же после нанесения раздражения, а через определенный промежуток времени, который называют латентным, или скрытым, периодом возбуждения. Следовательно, латентный период – это время, прошедшее от нанесения раздражения до момента начала механической реакции мышцы. В самой кривой выделяют восходящую часть – сокращение, и нисходящую часть – расслабление мышцы.

Суммация мышечных сокращений, зубчатый и гладкий тетанус. В естественных условиях к мышечным волокнам обычно поступают не редкие и одиночные нервные импульсы, а ряды часто следующих друг за другом импульсов, на которые мышца отвечает специфическим длительным сокращением. Длительное, слитное сокращение мышцы получило название тетанического сокращения, или тетануса.

К тетаническому сокращению способны только скелетные мышцы. Гладкие мышцы и поперечно-полосатая мышца сердца неспособны к тетаническому сокращению вследствие наличия продолжительного рефрактерного периода.

В эксперименте тетанус можно наблюдать при увеличении ритма раздражения

Рис. 10. Регистрация зубчатого тетануса. ►

Если ритм раздражения увеличить примерно до 10 — 15 раз в 1 сек, следующие друг за другом по нерву раздражающие сигналы сближаются во времени настолько, что каждый последующий стимул будет воздействовать на мышцу до того, как она успеет полностью расслабиться после предшествующего сокращения. Тогда в ответ на второе, третье и последующие раздражения мышца будет сокращаться, исходя не из полностью, а только частично расслабленного состояния

Это позволит записать неполный, или зубчатый, тетанус (Рис.10).

При еще большем ритме раздражения (для икроножной мышцы лягушки не меньше 20 раз в 1 сек) следующие друг за другом импульсы сближаются в такой мере, что каждый последующий действует раньше, чем закончится восходящая часть предыдущего сокращения. И поскольку интервал между стимулами короче, чем фаза сокращения, расслабления в интервале между раздражениями вообще не происходит. Результатом является сплошной (гладкий) тетанус (Рис.11), характеризуемый длительным сокращением, не прерываемым расслаблениями. Именно в таком режиме происходит абсолютное большинство сокращений скелетных мышц.

Рис. 11. Регистрация гладкого тетануса. Тетаническое сокращение скелетных мышц имеет преимущества перед одиночным

сокращением: оно сильнее и продолжительнее, что дает возможность сохранить определенное положение тела, держать груз и т. д. Благодаря гладкому тетанусу и обеспечивается плавность и слитность их движений

Причиной возникновения тетануса является увеличение внутриклеточной концентрации ионов кальция происходящее в результате несоответствия скорости его выброса и поглощения мембранами цистерн саркоплазматического ретикулума в процессе сокращения мышечного волокна. Импульсы приходят так часто, что между ними Са 2+ – АТФ-аза мембраны цистерн не успевает закачать весь кальций, выброшенный из цистерн при возбуждении обратно, а значит волокно не успевает или даже не может расслабиться. Чем чаще импульсы, тем большее количество кальция остается, поэтому амплитуда тетануса всегда выше, чем амплитуда одиночного сокращения, да и у тетануса передний фронт тоже всегда выше заднего.

Кроме тетанического сокращения, встречается еще одна разновидность длительного сокращения мышц, которая получила название контрактуры. Контрактурой называется состояние обратимого местного устойчивого сокращения, которое продолжается и при снятии раздражителя. Оно отличается от тетануса отсутствием распространяющегося потенциала действия. Контрактура мышцы наступает при нарушении обмена веществ или изменении свойств сократительных белков мышечной ткани. Например, кофеин при слишком высоких (миллимолярных) концентрациях проникает в мышечные волокна и, не вызывая возбуждения мембраны, способствует высвобождению Са 2+ из саркоплазматического ретикулума; в результате развивается контрактура. При калиевой контрактуре степень стойкой деполяризации и сократительного напряжения волокна зависит от концентрации К + в наружном растворе.

Всегда представляет собой контрактуру сокращение “тонических волокон”. Их электрическое раздражение в случае поперечно-полосатых мышц (медленных волокон глазных мышц, некоторых интрафузальных волокон) вызывает не распространяющийся потенциал действия, а местную деполяризацию мембраны. По мере повышения интенсивности или частоты надпороговой стимуляции тоническая деполяризация мембраны возрастает, что увеличивает как количество высвобождаемого внутриклеточного Са 2+ , так и силу сокращения.

Оптимум и пессимум частоты раздражения. Объяснение причин разнообразия тетанических ответов вызвало много споров. Гельмгольц, впервые (1847) записавший все формы тетануса, трактовал его как суперпозицию (наложение) одиночных, неизменных по величине, мышечных сокращений. Предполагалось, что мышца, находящаяся в состоянии сокращения под влиянием предыдущего импульса, отвечает на последующий импульс так же, как сократилась бы, находясь в состоянии расслабления или покоя.

Однако Н. Е. Введенский (1885) не согласился с тем, что тетанус простое наложение абсолютно одинаковых одиночных мышечных сокращений.

Он показал, что величина тетануса может значительно отличаться от величины одиночных сокращений, в зависимости от силы и частоты импульсов. Умеренные по силе и частоте раздражения (оптимальные), вызывают максимальный эффект, значительно превышающий амплитуду одиночного сокращения, а очень сильные и частые – (пессимальные), вызывают заметное ослабление эффекта. Это никак не согласовалось с теорией Гельмгольца.

На основании этого Н. Е. Введенский сделал вывод, что высота тетануса определяется не только наложением отдельных сокращений друг на друга, но и теми функциональными изменениями, которые оставляют в ткани приходящие раздражения.

Если каждый последующий импульс приходит с таким интервалом, что застает ткань в состоянии повышенной реактивной способности, то эффект сокращения будет сильным, а высота тетануса больше ожидаемой по Гельмгольцу. Н. Е. Введенский назвал это состояние повышенной возбудимости вслед за протекшим сократительным эффектом экзальтационной фазой. Экзальтационной фазе предшествует состояние пониженной реактивной способности – рефрактерная фаза. Импульсы, следующие с такой частотой, при которой они попадают в рефрактерную фазу, вызывают пессимальный эффект, снижение высоты тетануса. Это явление называют пессимальным торможением.

Таким образом, пессимальным или оптимальным будет ответ, зависит от того, в каком состоянии находится ткань к моменту прихода действующего на нее импульса.

Для свежей, неутомленной икроножной мышцы лягушки оптимальная частота раздражений, дающая при физиологически максимальной силе раздражения тетанус наибольшей величины, составляет 50-100 раз в1 сек; увеличение частоты раздражения до 200 — 300 раз в 1 сек приводит к пессимальному эффекту.

источник

Для скелетной мышцыхарактерны два основных режима сокращения — изометричес­кий и изотонический. Изометрический режим проявляется в том, что в мышце во время ее активности нарастает напряжение (генерируется сила), но из-за того, что оба конца мышцы

фиксированы (например, мышца пытается поднять большой груз) — она не укорачивается. Изотонический режим проявляется в том, что мышца первоначально развивает напряжение (силу), способную поднять данный груз, а потом мышца укорачивается — меняет свою длину, сохраняя напряжение, равное весу поднимаемого груза. Так как изотоническое со­кращение не является «чисто» изотоническим (элементы изометрического сокращения имеют место в самом начале сокращения мышцы), а изометрическое сокращение тоже не является «чисто» изотоническим (элементы смешения все-таки есть, несомненно), то пред­ложено употреблять термин «ауксотоническое сокращение» — смешанное по характеру.

Понятия «изотонический», «изометрический» важны для анализа сократительной ак­тивности изолированных мышц и для понимания биомеханики сердца.

Режимы сокращения гладких мышц. Целесообразно выделить изометрический и изотони­ческий режимы (и, как промежуточный — ауксотоническнй). Например, когда мышечная стенка полого органа начинает сокращаться, а орган содержит жидкость, выход для которой пере­крыт сфинктером, то возникает ситуация изометрического режима: давление внутри полого органа растет, а размеры ГМК не меняются (жидкость не сжимается). Если это давление ста­нет высоким и приведет к открытию сфинктера, то ГМК переходит в изотонический режим функционирования — происходит изгнание жидкости, т. е. размеры ГМК уменьшаются, а напряжение или сила — сохраняется постоянной и достаточной для изгнания жидкости.

У скелетной мышцы выделяют одиночное сокращение и суммированное сокращение, или тетанус. Одиночное сокращение — это сокращение, которое возникает на одиночный стимул, достаточный для вызова возбуждения мышцы. После короткого скрытого периода

Рис. 6. Миограммы мышц.

А — Одиночное сокращение мышцы: а — кривая сокращения (1 — отметка раздра­жения, 2 — латентный период, 3 — фаза уко­рочения, 4 — фаза расслабления); о — отметка времени с ценой деления 0,01 с. Б — Суммация сокращений икроножной мышцы лягушки: I — неполная и II — полная суммация; 1 — развернутая кривая одиночного мышечного сокращения при замыкании 1 -го контакта, 2 — при замыкании 2-го контакта, 3 — кривая суммации, 4 — отметка времени с ценой деления 0,01 с.

В — Запись сокращений икроножной мышцы лягушки при различной частоте наносимых раздражений:

а —кривая сокращений: 1 —одиночное сокращение, 2 — зубчатый тетанус, 3 — глад­кий тетанус, 4 — оптимум, 5

пессимум; б отметка частоты раздражений. Г — Миограмма гладкой мышцы желудка лягушки;

20

(латентный период) начинается процесс сокращения. При регистрации сократительной ак­тивности в изометрических условиях (два конца неподвижно закреплены) в первую фазу происходит нарастание напряжения (силы), а во вторую — ее падение до исходной величи­ны. Соответственно эти фазы называют фазой напряжения и фазой расслабления. При реги­страции сократительной активности в изотоническом режиме (например; в условиях обыч­ной миографической записи) эти фазы будут называться соответственно фазой укорочения и фазой удлинения. В среднем сократительный цикл длится около 200 мс (мышцы лягушки) или 30—80 мс (у теплокровных). Если на мышцу действует серия прямых раздражении (минуя нерв) или непрямых раздражений (через нерв), но с большим интервалом; при кото­ром всякое следующее раздражение попадает в период после окончания 2-Й фазы, то мыш­ца будет на каждый из этих раздражителей отвечать одиночным сокращением.

Читайте также:  Упражнения для мышц спины подтягиваться

Возникают в том случае, если на мышцу наносятся 2 и более раздражения, причем вся­кое последующее раздражение (после предыдущего) наносится либо во время 2-й фазы (рас­слабления или удлинения), либо во время 1-й фазы (укорочения или напряжения).

В случае, когда всякое второе раздражение попадает в период фазы расслабления (удли­нения), возникает частичная суммация — сокращение еще полностью не закончилось, а уже возникло новое. Если подается много раздражителей с подобным интервалом, то воз­никает явление зубчатого тетануса. Если раздражители наносятся с меньшим интервалом и каждое последующее раздражение попадает в фазу укорочения, то возникает так называе­мый гладкий тетанус.

Амплитуда гладкого тетануса зависит от частоты раздражения (интервала между раз­дражителями). Если каждый последующий раздражитель попадает в фазу экзальтации (по­вышенной возбудимости), то ответ мышцы будет достаточно большим, если же импульсы попадают в период сниженной возбудимости (относительная рефрактерная фаза), то ответ мышцы будет намного меньше. Такая зависимость амплитуды ответа мышцы от частоты раздражения получила название оптимума и пессимума частоты раздражения. Например, импульсы с частотой 30 Гц (30 имп/с) вызывают тетанус высотой 10 мм миографической записи, импульсы, идущие с частотой 50 Гц — 15 мм, с частотой 200 Гц — 3 мм. В этом примере 50 Гц — оптимальная частота, 200 Гц — пессимальная. Альфа-мотонейрон может посылать к мышце серию импульсов — например, 20 имп/с, 40 имп/с, или 50 имл/с. Таким образом, меняя частоту посылки импульсов к мышечным волокнам, альфа-мотонейрон мо­жет регулировать величину сократительного ответа своего мышечного пула.

Все наши сокращения возникают в ответ на импульсную стимуляцию частотного харак­тера и являются тетаническими.

Для скелетной мышцы характерен еще один вид активности — та»к называемая контрак­тура. В экспериментальных условиях ее легко получить путем воздействия на мышцы, на­пример, гиперкалиевым раствором: он вызывает длительную деполяризацию мембраны, и это приводит к достаточно длительной активности мышцы (калиевая контрактура). Кофеин тоже вызывает контрактуру (кофеиновую) — длительное сокращение, которое держится в течение всего времени, пока в растворе содержится кофеин, Кофеиновая контрактура ЯВ’ ляется следствием высвобождения ионов кальция из саркоплазматического ретикулюма, В условиях целостного организма контрактура возникает при патологии и проявляется в длительном, слитном сокращении мышцы, которое не управляется корой (волей человека), Природа патологических контрактур различна.

Для гладких мышц виды сокращений иные. Для так называемых тонических гладких мышц в условиях «покоя» характерно наличие базального тонуса — некоторой активности. Если мышцу обработать веществом, полностью снимающим эту тоническую активность, то мышца расслабится и тем самым «покажет», что до момента обработки она имела опре-

деленное напряжение. В ответ на различного рода воздействия (медиаторы вегетативной нервной системы, гормоны, БАВ) базальный тонус будет меняться медленно (в течение минут): соответственно повышаться (при действии стимуляторов сократительной активно­сти) или уменьшаться (ингибиторы сократительной активности). Например, в ответ на ад­реналин мышечная полоска из аорты кролика повышает базальный тонус, а в ответ на аце-тилхолин — снижает его.

Для фазно-тонических мышц ситуация иная. Во-первых, у части таких мышц в условиях «покоя» имеется базальный тонус и фазная активность: мышца спонтанно периодически укорачивается и удлиняется (имеет место спонтанная фазная активность). Фазное сокраще­ние протекает очень медленно — намного медленнее, чем сокращение скелетной мышцы (например, сокращение матки беременной женщины происходит в течение 1—2 минут). При действии раздражителя — стимулятора сократительной активности — может повы­шаться исходный базальный тонус и одновременно меняется фазная активность — возрас­тает ее амплитуда и частота генерации сокращений. Во всех случаях фазная активность — это вариант одиночных, а не тетанических сокращений. При действии ингибитора происхо­дит снижение базального тонуса, уменьшение частоты генерации фазных сокращений или амплитуды вплоть до полной остановки генерации фазных сокращений.

У других фазно-тонических мышц в условиях покоя имеет место базальный тонус, а спонтанных фазных сокращений нет. В ответ на стимулятор такая мышца может увеличить исходный базальный тонус и одновременно начать генерировать фазные сокращения (триг-герный эффект вещества-стимулятора).

источник

Если мышцу стимулировать коротким электрическим импульсом, спустя небольшой латентный период происходит ее сокращение. Такое сокращение называется «одиночное сокращение мышцы». Одиночное мышечное сокращение длится около 10-50 мс, причем оно достигает максимальной силы через 5-30 мс.

Каждое отдельное мышечное волокно подчиняется закону «все или ничего», т. е. при силе раздражения выше порогового уровня происходит полное сокращение с максимальной для данного волокна силой, а ступенчатое повышение силы сокращения по мере увеличения силы раздражения невозможно. Поскольку смешанная мышца состоит из множества волокон с различным уровнем чувствительности к возбуждению, сокращение всей мышцы может быть ступенчатым в зависимости от силы раздражения, при этом при сильных раздражениях происходит активация глубжележащих мышечных волокон.

Однократное электрическое раздражение (рис. 2.4, вверху) ведет к единичному мышечному сокращению (рис. 2.4, внизу). Два близко друг за другом следующих раздражения накладываются друг на друга (это называется «суперпозиция», или суммация сокращений), что ведет к более сильному мышечному ответу, близкому к максимальному. Серия часто повторяющихся электрических раздражений вызывает возрастающие по силе мышечные сокращения, в результате чего не происходит должного расслабления мышцы. Если частота электрических импульсов выше частоты слияния, то единичные раздражения сливаются в одно и вызывают тетанус мышцы (тетаническое сокращение) — устойчивое достаточно длительное напряжение сокращенной мышцы.

Выделяют различные функциональные формы мышечных сокращений (рис. 2.5).

  • При изотоническом сокращении мышца укорачивается, однако ее внутреннее напряжение (тонус!) остается неизменным во всех фазах рабочего цикла. Типичным примером изотонического мышечного сокращения является динамическая мышечная работа сгибателей и разгибателей без существенных изменений внутримышечного напряжения, например подтягивание.
  • При изометрическом сокращении мышечная длина не изменяется, а сила мышцы проявляется в повышении ее напряжения. Типичным примером изометрического сокращения является статическая мышечная активность при поднимании тяжестей (удерживание штанги).
  • Чаще всего наблюдаются комбинированные варианты сокращения мышц. Например, комбинированное сокращение, при котором мышцы сначала сокращаются изометрически, а затем изотонически, как при поднятии тяжести, называют удерживающим сокращением.
  • Установочным (изготовочным) называют сокращение, при котором, наоборот, после начального изотонического сокращения следует изометрическое. Примером является ротационное движение руки с рычагом — затягивание винта с помощью гаечного ключа или отвертки.
  • Различные формы мышечных сокращений выделяют для их описания и систематизации. На самом деле в большинстве динамических спортивных движений происходит как укорочение мышцы, так и повышение напряжения (тонуса) мышц — ауксотонические сокращения.

Использованные здесь термины нетипичны для русской литературы по мышечной активности. В отечественной литературе принято выделять следующие типы сокращений.

  • Концентрическое сокращение — вызывающее укорачивание мышцы и перемещение места прикрепления ее к кости, при этом движение конечности, обеспечиваемое сокращением данной мышцы, направлено против преодолеваемого сопротивления, например силы тяжести.
  • Эксцентрическое сокращение — возникает при удлинении мышцы во время регулирования скорости движения, вызванного другой силой, или в ситуации, когда максимального усилия мышцы не хватает для преодоления противодействующей силы. В результате движение происходит в направлении воздействия внешней силы.
  • Изометрическое сокращение — усилие, противодействующее внешней силе, при котором длина мышцы не изменяется и движения в суставе не происходит.
  • Изокинетическое сокращение — сокращение мышцы с одинаковой скоростью.
  • Баллистическое движение — быстрое движение, включающее: а) концентрическое движение мышц-агонистов в начале движения; б) инерционное движение во время минимальной активности; в) эксцентрическое сокращение для замедления движения.

Укорочение мышцы происходит за счет укорочения образующих ее саркомеров, которые, в свою очередь, укорачиваются за счет скольжения относительно друг друга актиновых и миозиновых филаментов (а не укорочения самих белков). Теория скольжения филаментов была предложена учеными Huxley и Hanson (Huxley, 1974; рис. 2.6). (В 1954 г. две группы исследователей — X. Хаксли с Дж. Хэнсон и А. Хаксли с Р. Нидергерке — сформулировали теорию, объясняющую мышечное сокращение скольжением нитей. Независимо друг от друга они обнаружили, что длина диска А оставалась постоянной в расслабленном и укороченном саркомере. Это позволило предположить, что есть два набора нитей — актиновые и миозиновые, причем одни входят в промежутки между другими, и при изменении длины саркомера эти нити каким-то образом скользят друг по другу. Сейчас эта гипотеза принята почти всеми.)

Актин и миозин — два сократительных белка, которые способны вступать в химическое взаимодействие, приводящее к изменению их взаимного расположения в мышечной клетке. При этом цепочка миозина прикрепляется к актиновой нити с помощью целого ряда особых «головок», каждая из которых сидит на длинной пружинистой «шее». Когда происходит сцепление между миозиновой головкой и актиновой нитью, конформация комплекса этих двух белков изменяется, миозиновые цепочки продвигаются между актиновыми нитями и мышца в целом укорачивается (сокращается). Однако, чтобы химическая связь между головкой миозина и активной нитью образовалась, необходимо подготовить этот процесс, поскольку в спокойном (расслабленном) состоянии мышцы активные зоны белка актина заняты другим белком — тропохмиозином, который не позволяет актину вступить во взаимодействие с миозином. Именно для того, чтобы убрать тропомиозиновый «чехол» с актиновой нити, требуется быстрое выливание ионов кальция из цистерн саркоплазматического ретикулума, что происходит в результате прохождения через мембрану мышечной клетки потенциала действия. Кальций изменяет конформацию молекулы тро-помиозина, в результате чего активные зоны молекулы актина открываются для присоединения головок миозина. Само это присоединение осуществляется с помощью так называемых водородных мостиков, которые очень прочно связывают две белковые молекулы — актин и миозин — и способны в таком связанном виде находиться очень долго.

Для отсоединения миозиновой головки от актина необходимо затратить энергию аденозинтрифосфа-та (АТФ), при этом миозин выступает в роли АТФазы (фермента, расщепляющего АТФ). Расщепление АТФ на аденозиндифосфат (АДФ) и неорганический фосфат (Ф) высвобождает энергию, разрушает связь между актином и миозином и возвращает головку миозина в исходное положение. В дальнейшем между актином и миозином могут снова образовываться поперечные связи.

При отсутствии АТФ актин-миозиновые связи не разрушаются. Это и является причиной трупного окоченения (rigor mortis) после смерти, т. к. останавливается выработка АТФ в организме — АТФ предотвращает мышечную ригидность.

Даже при мышечных сокращениях без видимого укорочения (изометрические сокращения, см. выше) активируется цикл формирования поперечных связей, мышца потребляет АТФ и выделяет тепло. Головка миозина многократно присоединяется на одно и то же место связывания актина, и вся система миофиламентов остается неподвижной.

Внимание: Сократительные элементы мышц актин и миозин сами по себе не способны к укорочению. Мышечное укорочение является следствием взаимного скольжения миофиламентов относительно друг друга (механизм скольжения филаментов).

Как же образование поперечных связей (водородных мостиков) переходит в движение? Одиночный саркомер за один цикл укорачивается приблизительно на 5-10 нм, т.е. примерно на 1 % своей общей длины. За счет быстрого повторения цикла поперечных связей возможно укорочение на 0,4 мкм, или 20% своей длины. Поскольку каждая миофибрилла состоит из множества саркомеров и во всех них одновременно (но не синхронно) образуются поперечные связи, суммарно их работа приводит к видимому укорочению всей мышцы. Передача силы этого укорочения происходит через Z-линии миофибрилл, а также концы сухожилий, прикрепленных к костям, в результате чего и возникает движение в суставах, через которые мышцы реализуют перемещение в пространстве частей тела или продвижение всего тела.

Наибольшую силу сокращений мышечные волокна развивают при длине 2-2,2 мкм. При сильном растяжении или укорочении саркомеров сила сокращений снижается (рис. 2.7). Эту зависимость можно объяснить механизмом скольжения филаментов: при указанной длине саркомеров наложение миозиновых и актиновых волокон оптимально; при большем укорочении миофиламенты перекрываются слишком сильно, а при растяжении наложение миофиламентов недостаточно для развития достаточной силы сокращений.

Скорость укорочения мышцы зависит от нагрузки на эту мышцу (закон Хилла, рис. 2.8). Она максимальна без нагрузки, а при максимальной нагрузке практически равна нулю, что соответствует изометрическому сокращению, при котором мышца развивает силу, не изменяя своей длины.

Важным фактором, влияющим на силу сокращений, является величина растяжения мышцы. Тяга за конец мышцы и натяжение мышечных волокон называются пассивным растяжением. Мышца обладает эластическими свойствами, однако в отличие от стальной пружины зависимость напряжения от растяжения не линейна, а образует дугообразную кривую. С увеличением растяжения повышается и напряжение мышцы, но до определенного максимума. Кривая, описывающая эти взаимоотношения, называется кривой растяжения в покое.

Данный физиологический механизм объясняется эластическими элементами мышцы — эластичностью сарколеммы и соединительной ткани, располагающимися параллельно сократительным мышечным волокнам.

Также при растяжении изменяется и наложение друг на друга миофиламентов, однако это не оказывает влияния на кривую растяжения, т. к. в покое не образуются поперечные связи между актином и миозином. Предварительное растяжение (пассивное растяжение) суммируется с силой изометрических сокращений (активная сила сокращений).

источник