Меню Рубрики

Функции сердечной мышцы проводимость сократимость

Возбудимость – возникновение возбужд. при действии на него электрич., химич., термич. и др. раздражителей. В основе процесса лежит появление отрицательного электрич. потенциала в первоначально возбужденном участке, при этом сила раздражителя должна быть не менее пороговой. Степень сокращения серд. мышцы зависит не только от силы раздражителя, но и от величины ее предварительного растяжения, а также от температуры и состава питающей ее крови. В начальном периоде возбуждения серд. мышца рефрактерна к повторным раздражениям, что составляет фазу абсолютной рефрактерности, равную по времени систоле сердца. Вследствие достаточно длит. периода абсолютной рефракт. серд. мышца не может сокращаться по типу тетануса. С началом расслабления возб. сердца восстанавливается и начинается фаза относит. рефракт. Поступление в этот момент дополнит. импульса вызывает внеочередное сокращ. сердца (экстрасистолу). Период, следующ. за экстрасистолой, длится больше, чем обычно (компенсаторн. пауза). После фазы относит. рефракт. наступает период повыш. возбудим. (импульсы небольш. силы могу вызвать сокращ. сердца).
Проводимость – обеспеч. распр. возбужд. от клеток водителей ритма по всему миокарду. ПД, возникающий в одной мыш. кл., является раздражителем для др. Проводимость в разн. участках сердца неодинакова, зависит о структурных особенностей миокарда и проводящей с-мы, толщины миокарда, температуры, ур-ня гликогена, кислорода, микроэл. в серд. мышце. Сократимость – обуславливает увеличение напряжения или укорочение ее мыш. волокон при возбуждении. Сокращение – ф-ция миофибрилл. Сила сокращения сердца прямо пропорциональна длине мыш. волокон, т.е. степени их растяжения при измен. величины потока венозной крови (чем сильнее сердце растянуто во ремя диастолы, тем сильнее оно сокращается во время систолы – закон сердца Франка-Старлинга). Автоматия – способность сердца к ритмич. сокращению без вн. раздражений под влиянием импульсов, возникающих в самом сердце. Возбуждение в сердце возникает в месте впадения полых вен в пп (синоатриальный узел – главный водитель ритма). Далее возб. по предсердиям распр. до атриовентрикулярного узла (межпредсердная перегородка пп), затем по пучку Гиса, его ножкам и волокнам Пуркинье оно провод. к желудочкам. Автоматия обусл. измен. мембр. потенциалов в водителе ритма, что связ. со сдвигом С К и Nа по обе стороны деполяризованных клет. мембран. На хар-р проявления автоматии влияет содерж. Са в миокарде, рН внутр. ср. и Т, некот. гормоны.

6. Электрические явления в сердечной мышце. Электрокарди­ограмма и ее основные показатели. Изменение показателей ЭКГ при мышечной деятельности.

При возб. серд. мышцы возникающ. на ее пов-ти эл. потепнциалы созд. в окр. тканях динамич. эл. поле, кот. может быть зарегистр. с пов-ти тела. Регистрация биоэлектрич. явл., возникающ. при возб. сердца – ЭКГ. В норме на ЭКГ различают 6 зубцов. Зубец Р – процесс возб. в миокарде предсердий. Возб. пп происх. раньше лп. на 0,02-0,03с, поэтому правая половина зубца Р до вершины – возб. пп, вторая – лп. Продолжит-ть – 0,11с, реполяризация п не выражена. Зубец Q – первый зубец желуд. кпл, всегда обращен книзу, отражает процесс распр. возб. из атриавентрикулярного узла на межжелуд. перегородку. Наиб. непост. зубец. Интервал Р-Q – атриовентрикулярная задержка. Продолж-ть завис. от частоты серд. ритма, в норме – 0,12-0,20с. Зубец R – напр. вверх. Отраж. процессы деполяризации стенок лж и пж и верхушки сердца. Зубец S – непост. отрицат. зубец. Отраж. несколько более поздний охват возбужд. отдаленных участков миокарда. Зубец Т – процесс быстрой реполяризации миокарда ж. От 0,1-0,25с. QRST – желуд. кпл., отраж. процесс распр. возб. и прекращения его в миокарде ж. Интервал ST – отраж. сост. уравновешенности потенциалов всех уч. миокарда и период медленной реполяризации. Интервал Т-Р – диастола. Зубец U – после Т чз 0,01-0,04с. Его появл. связ. с эл. потенциалами, возникающими при растяж. желуд. в нач. фазе диастолы или с явл. следовой реполяризации волокон проводящей с-мы сердца. Интервал Q-T – эл. систола ж. ЭКГ регистр. по 3 отведениям – 1 – прав. рука-лев. рука, 2 – прав. рука-лев.нога, 3 – лев.рука-лев.нога. Для нормальной ЭКГ спортсмена характерны наличие умеренной и выраженной синусовой брадикардии и аритмии, удлинение электрической систолы сердца ( интервал О.Т).

7. Систолический, резервный и остаточный объемы крови в желудочках. Минутный объем крови. Изменение этих по­казателей при мышечной деятельности.

СО – накопленная кровь в желудочках во время диастолы, выталкиваемая при каждом сокращ. желуд. в аорту и лег. ствол. В покое СО – 50-70мл, при мыш. раб. – 150-180мл за счет усиления мощности сокращ. серд. мышцы. МОК – кол-во крови, выбрасываемое одним ж. за 1мин. МОК=СО*ЧСС в 1 мин. МОК – 3-5л. При напряж. физ. раб. – 25-30л. Оставшийся в сердце после систолы резервный объем крови является своеобразным депо, обеспечивающим увеличение сердечного выброса при ситуациях, в которых требуется быстрая интенсификация гемодинамики (например, при физической нагрузке). Остаточный объем — это то количество крови, которое не может быть вытолкнуто из желудочка даже при самом мощном сердечном сокращении.

8. Частота сердечных сокращений в покое. Методики исследо­вания этого показателя и его изменения при мышечной работе.

ЧСС в покое — 60-80 уд/мин. Менее 60 – брадикардия, более 90 – тахикардия. Измеряют – пальпаторно, сфигмограмма, пульсоксиметрия. При мыш. раб. ЧСС возрастает (до 220).

9. Артериальное давление и факторы, его определяющие. Ме­тодики измерения артериального давления, его изменение при физических нагрузках.

Средн. арт. давл. – та величина давл., кот. могла бы обеспечить течение крови в артериях без колебаний давления при систоле и диастоле. Величина АД зависит от скоратит. силы миокарда, величины МОК, длины, емкости и тонуса сосудов, вязкости крови. Давление будет тем выше, чем сильнее сокращения сердца и чем больше тонус сосудов. Измеряют прямым (введение иглы в артерию) и косвенным способами (Рива-Роччи).

10. Давление крови и скорость кровотока в разных отделах сосудистой системы. Объемная и линейная скорость крово­тока. Время кругооборота крови.

Объемная скорость кровотока – объем крови, протекающий в единицу времени. Зависит от просвета сосудов (в аорте самая высокая, в капилляре – низкая), но в одинаковых сосудах одинакова. Высокое сопротивление артериол и капилляров обуславливает то, что на этом участке давление врои падает. Линейная скорость кровотока – расстояние, которое частица крови проходит за ед. времени. Не меняется по ходу сосуд. русла, зависит только от общей поперечной площади сосудов одного калибра (чем больше площадь, тем меньше скорость). Лиин. скор. максимальна в центре сосуда и минимальна у его стенок в связи с наличием сил трения межу кровью и стенкой сосуда. Время полного кругооборота крови в покое – 21-23с, при тяж. раб. – 8-10с.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студента самое главное не сдать экзамен, а вовремя вспомнить про него. 10242 — | 7598 — или читать все.

193.124.117.139 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Второй узел расположен в толще сердечной перегородки на границе предсердий и желудочков и называется атриовентрикулярным узлом.

Автоматизм сердечной мышцы

Автоматизм – это способность сердца к ритмическому сокращению под влиянием импульсов, возникающих в самом органе.

Возникновение импульсов связано с функцией особых мышечных клеток – пейсмекеров, которые образуют три узла сердца. Эти три узла обеспечивают выполнение автоматизма сердечной мышцы.

Первый узел расположен в месте впадения полых вен в правое предсердие. Он называется синусным узлом.

Третий узелрасположен ниже второго и носит название пучок Гиса. От пучка Гиса отходят две ножки — правая и левая, каждая из которых заканчивается волокнами Пуркинье, которые образуют синапс с клетками миокарда.

Все три узла связаны между собой межузловыми пучками (которые образованы мышечными клетками) и анатомически образуют единую систему. Данная система проходит через все сердце, от его вершины до основания.

Возникшее возбуждение в первом узле передается по межузловым пучкам ко второму узлу, а затем возбуждение передается на третий узел.

Таким образом, возбуждение охватывает все сердце и вызывает его последовательное сокращение, сначала предсердия, потом желудочки.

Самым главным из трех узлов является первый — синусный узел. Он определяет частоту сердечных сокращений в 1 минуту. Сколько импульсов будет образовано в синусном узле, столько раз сердце сократиться за 1 минуту.

Взаимосвязь между узлами обеспечивает ритмичное сокращение предсердий и желудочков.

В условиях покоя синусный узел вырабатывает 60 – 80 импульсов в минуту, что соответствует 60 – 80 ударам сердца в минуту. Уменьшение ЧСС называется брадикардией, а увеличение – тахикардией.

Возбудимость– это способность сердца отвечать на различные внешние и внутренние раздражения переходом из состояния покоя к состоянию активной деятельности (к сокращению). Возбуждение связано с появлением в возбужденном участке отрицательного электрического потенциала – потенциала действия, который распространяется по сердечной мышце, начиная предсердиями и заканчивая основаниями желудочков. Таким образом, передача возбуждения по сердечной мышце обеспечивается таким свойством, как проводимость.Проводимость наблюдается и при передачи возбуждения от одного узла автоматизма к другому, и к третьему.

Возбудимость сердечной мышцы может изменяться. Если очередное возбуждение застаёт сердечную мышцу в момент сокращения (систолы), то на него сердце не отвечает — это фаза абсолютной рефрактерности(состояние полной невозбудимости). С началом расслабления возбудимость сердца начинает восстанавливаться и наступает фаза относительной рефрактерности. Поступление в этот момент интенсивного стимула вызывает внеочередное сокращение сердца – экстрасистолу. После фазы относительной рефрактерности наступает фаза повышенной возбудимости. Это означает, что в этот момент сокращение сердца могут вызвать даже очень слабые импульсы. Период этот непродолжителен и вскоре наступает восстановление нормального уровня возбудимости.

Возбуждение сердечной мышцы вызывает её сокращение, т.е. увеличение её напряжения или укорочение длины мышечного волокна. Таким образом, сократимость сердца – это способность сердечной мышцы сократиться в ответ на возбуждение

§ 4. Динамика сокращений сердца, фазы сердечного цикла

Безостановочное движение крови по сосудам происходит в результате ритмических сокращений сердца, которые чередуются с его расслаблениями.

Сокращение сердечной мышцы называет систолой, а расслабление – диастолой.

Время, за которое происходит систола предсердий, систола желудочков и общая пауза – называется сердечным циклом.

Во время общей паузы — правое предсердие наполняется кровью из верхней и нижней полой вены, а левое предсердие наполняется кровью из четырех легочных вен. В это время открыты створчатые клапаны и кровь из предсердий течет в желудочки. Полулунные клапаны аорты и легочной артерии — закрыты.

Перед началом систолы желудочков начинается систола предсердий, во время которой происходит некоторое добавочное наполнение желудочков кровью. Однако, это наполнение не играет большой роли, поскольку большая часть наполняющей желудочки крови уже поступила. Сокращение предсердий сменяется диастолой и расслаблением.

После систолы предсердий начинается систола желудочков. Сокращение желудочков развивается постепенно. Вначале увеличивается напряжение мышечной ткани желудочков, что приводит к увеличению в них давления крови. Для того, чтобы кровь из желудочков не вернулась в предсердия, атриовентрикулярные клапаны закрываются. Полулунные клапаны в это время также закрыты, поскольку давление в желудочках ниже, чем в аорте и легочной артерии. По мере увеличения напряжения мышечной ткани желудочков, увеличивается давление крови в них. Когда величина давления в желудочках превысит давление в аорте и легочной артерии, открываются полулунные клапаны и происходит изгнание крови из желудочков.

После изгнания крови из желудочков наступает их диастола.В опустевших желудочках давление становится ниже, чем в сосудах, и для того чтобы кровь не вернулась в сердце закрываются полулунные клапаны. Расслабление желудочков продолжается, давление в них становится еще ниже, и когда величина давления в желудочках станет меньше величины давления в предсердиях откроются створчатые клапаны.

После того, как открываются створчатые клапаны, наступает общая пауза. Кровь из предсердий начинает наполнять желудочки и всё повторяется вновь.

§ 5. Электрокардиограмма (ЭКГ)

Электрокардиограмма – это метод графической регистрации биотоков, возникающих в сердце при его деятельности. По данным ЭКГ можно судить об автоматизме, возбудимости и проводимости сердца.

Для регистрации ЭКГ у человека применяют 3 стандартных отведения. При первом отведении – электроды накладывают на правую и левую руку, при втором – правую руку и левую ногу, при третьем – на левую руку и левую ногу. Помимо стандартных отведений применяют отведения от разных точек грудной клетки, а также однополюсные отведения от конечностей.

Типичная ЭКГ человека состоит из зубцов. Их обозначают латинскими буквами: Ρ,Q,R,S,T. Три крупных зубца – Р,R,T – обращены вершиной вверх, два мелких – Q, S – направлены вниз. Промежутки между зубцами называют сегментами, совокупность зубца и сегмента – интервалом.

Зубец Р – отражает возбуждение предсердий.

Комплекс Q,R,S – возбуждение желудочков.

Зубец Т – отражает восстановление нормального потенциала мембраны клеток миокарда, т.е. реполяризацию миокарда.

Интервал P-Q отражает время движения возбуждения от предсердий к желудочкам.

Сегмент S-T – соответствует периоду угасания возбуждения желудочков и началу реполяризации.

Интервал Т-Р отражает состояние покоя всей сердечной мышцы (диастола сердца), рисунок 8.

Интервал R-R – отражает длительность сердечного цикла и зависит от частоты сердечных сокращений. При брадикардии он удлинен, при тахикардии – укорочен.

Рис. 8. Электрокардиограмма

§ 6. Систолический и минутный объемы крови

Основной физиологической функцией сердца является нагнетание крови в сосудистую систему. Количество крови, выбрасываемой желудочком сердца в минуту, является одним из важнейших показателей функционального состояния сердца и называется минутным объемом крови (МОК). Он одинаков для правого и левого желудочков. В состоянии покоя МОК равен в среднем 4,5-5,0 л.

Левый и правый желудочки при каждом сокращении сердца изгоняют в аорту и легочную артерию около 70-75 мл крови. В состоянии покоя этот объем одинаков как для левого, так и для правого желудочков и называется систолическим объемом крови (СО) или ударным объемом. Его величину можно определить, разделив МОК на число сердечных сокращений в минуту:

СО = .

Величина систолического объема зависит от возраста, пола, уровня физического развития, степени тренированности и положении тела. При ритме сердечных сокращений, равных 70-75 в минуту систолический объем равен 65-70 мл крови. Эта величина непостоянна, поскольку МОК увеличивается при мышечной работе и может достигать 20-30 л. У тренированных людей это увеличение происходит в результате увеличения систолического объема сердца, а у нетренированных – за счет частоты сердечных сокращений.

Систолический объем возрастает во время мышечной работы. У спортсменов он может увеличиться до 170-190 мл, а у не спортсменов систолический объем редко превышает 100-120 мл.

Минутный объем крови можно вычислить путем умножения СОК на частоту сердечных сокращений (пульс):

Дата добавления: 2014-01-07 ; Просмотров: 1342 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Читайте также:  Тренировки два раза в неделю все мышцы

источник

Между клетками проводящей системы и рабочим миокардом имеются тесные контакты в виде нексусов,поэтому возбуждение, возникшее в одном участке сердца, проводится без затухания (без декремента) в другой. Скорость распространения возбужде­ния от предсердий к желудочкам составляет 0,8— 1,0м/с. Прохо­дя атриовентрикулярный узел, возбуждение задерживается на 0,04с. Далее, распространившись по пучку Гиса и волокнам Пуркинье, возбуждение охватывает мускулатуру желудочков со ско­ростью 0,75—4,0м/с.

Таким образом, мышечная ткань сердца ведет себя как функ­циональный синцитий. Благодаря этой особенности сердце, в от­личие от скелетной мышцы, подчиняется закону «все или ничего». Это означает, что на раздражение возрастающей силы, начиная от порогового, мышца сердца отвечает сразу возбуждением всех волокон, т.е. амплитуда сокращений одинакова. Если раздражи­тель подпороговый, то она совсем не реагирует. Однако если раз­дражать сердечную мышцу током возрастающей частоты, оста­вив его силу постоянной, то каждое увеличение частоты раздра­жителя вызовет возрастающее сокращение сердечной мышцы — феномен «treppe» — лестницы. Это явление можно объяснить по­паданием каждого последующего импульса в фазу повышенной возбудимости и накоплением ионов Са 2+ в области миофибрилл, что и дает усиление ответной реакции.

Сокращение сердца, как и у скелетных мышц, запускается ПД. Однако если у скелетной мышцы ПД составляет всего несколько миллисекунд и предшествует сокращению, то у сердеч­ной ПД и фазы сокращения перекрывают друг друга. ПД заканчи­вается только после начала фазы расслабления. Это одна из осо­бенностей электромеханического сопряжения сердечной мыш­цы. Другая особенность состоит в том, что существует взаимо­связь между внутриклеточным депо Са 2+ и Са 2+ внеклеточной среды. Как упоминалось выше, во время ПД Са 2+ входит в клетку из внеклеточной среды и увеличивает длительность ПД, а значит, и рефракторного периода, тем самым создаются условия для по­полнения внутриклеточных запасов кальция, участвующего в по­следующих сокращениях сердца.

Вокруг возбужденного сердца возникает электрическое поле, которое можно зарегистрировать с поверхности тела в виде элек­трокардиограммы. Электрические потенциалы прежде всего воз­никают в возбужденном синоатриальном узле. Этот участок ста­новится электроотрицательным по отношению к невозбужденно­му, заряженному положительно. Это и приводит к появлению электрических потенциалов и дальнейшему их распространению по проводящей системе сердца, миокарду предсердий и желудоч­ков.

Электрокардиограмма отражает процесс возникновения воз­буждения и его проведение по сердцу, но не его сокращение. В нормальной электрокардиограмме различают пять зубцов: Р, Q, R, S, Т(рис.12). Возникновение зубцаРобусловлено распростране­нием возбуждения в предсердиях —это алгебраическая сумма электрических потенциалов, возникающих в предсердиях. ЗубецQсоответствует возбуждению сосочковых мышц. Зубец R —воз­буждению оснований желудочков, зубец S —верхушки сердца. Зубец Г отражает процесс реполяризации желудочков и состоя­ние метаболизма миокарда. Он очень изменчив и может иска­жаться при различного рода интоксикациях, например, при ин­фекциях (дизентерия и др.), отравлениях химическими ядами, при гипоксии, инфаркте миокарда, диабете.

Итак, различают предсердный комплекс, куда входит зубец Р, исегментPQ,а также желудочковый комплексQRSи сегментST. Интервал PQот начала зубцаРдо начала зубца Qотражает время проведения возбуждения от предсердий к желудочкам, в норме он равен 0,12-0,18с.

При нарушении проведения импульсов из предсердий к же­лудочкам, вызванном или органическими изменениями в прово­дящей системе, или отравлением сердечными глюкозидами, уве­личением содержания ионов К + , снижением МП, а также гипо­ксией возникаетнеполная атриовентрикулярная блокада.При этом не все импульсы периодически проводятся к желудочкам или их проведение задерживается, тогда интервалPC? становится больше 0,18с.

При полном нарушении проводимости между предсердиями и желудочками возникает полная атриовентрикулярная блока­да предсердия и желудочки сокращаются независимо друг от друга: предсердия в синусном ритме, желудочки —в ритме пейсмекера 2-го или 3-го порядка.

Рис. 12. Электрокардиограмма (схема зубцов и интервалов) ЗубецРотражает возбуждение предсердий; интервалPQ распространение возбуждений от предсердий к желудочкам;QT (QRST) желудочковый комплекс; зубец Т —процесс реполяризации желудочков

Длительность комплекса ORSсоставляет 0,06 — 0,1с. Его уши-рение является признаком нарушения внутрижелудочковой про­водимости. ИнтервалQTсоставляет 0,36с и зависит от частоты сердечных сокращений. Чем больше частота, тем короче интер­вал. Амплитуда зубцов ЭКГ следующая: Р 0,6MB; T=от 1/6до2/3R.

Для регистрации ЭКГ используют 3стандартных биполярных отведения от конечностей (треугольник Эйнтховена), 1-е отведе­ние: правая рука-левая рука; 2-е отведение: правая рука-левая но­га; 3-е отведение: левая рука-левая нога. Кроме того, регистриру­ют 3усиленных униполярных отведения:aVR активный элект­род на правой руке,aVL активный электрод на левой руке,aVF активный электрод на левой ноге и 6униполярных груд­ных отведении по Вильсону —V1V6

При биполярных отведениях по Эйнтховену точки, от кото­рых отводят потенциалы, совпадают с вершинами равносторон­него треугольника, стороны которого и представляют собой оси отведении. С помощью треугольника Эйнтховена можно устано­вить величину электродвижущей силы сердца, а значит, и высоту зубцов ЭКГ. Высота зубца Rво 2-м отведении в нормограмме рав­на сумме зубца Rв 1-ми 3-м отведении, т.е.R2=R1+R3

источник

Перед описанием функций главного органа сердечной и сосудистой системе человека — сердца, необходимо кратко остановиться на его строении, ведь сердце является не только «органом любви», но и выполняет важнейшие функции поддержания жизнедеятельности организма в целом.

Итак, сердце (греч. kardia, отсюда название науки о сердце — кардиология) — представляет собой полый мышечный орган, который принимает кровь из впадающих венозных сосудов и нагнетает уже обогащенную кровь в артериальную систему. Сердце человека состоит из 4-ех камер: левое предсердие, левый желудочек, правое предсердие и правый желудочек. Между собой левое и правое сердце разделены межпредсердной и межжелудочковой перегородками. В правых отделах течет венозная (не насыщенная кислородом кровь), в левых — артериальная (насыщенная кислородом кровь).

В данном разделе мы опишем общие функции сердечной мышцы, как органа в целом.

В состав клеток сердца (кардиомиоцитов) входят и так называемые атипичные кардиомиоциты, которые подобно электрическому скату спонтанно вырабатывают электрические импульсы возбуждения, а они в свою очередь способствуют сокращению сердечной мышцы. Нарушение данного свойс свойства приводит, чаще всего, к остановке кровообращения и без оказания своевременной помощи является летальной.

В сердце человека есть определенные проводящие пути, которые обеспечивают проведение электрического заряда по сердечной мышце не хаотично, а направленно, в определенной последовательности, от предсердий к желудочкам. При нарушении в проводящей системе сердца выявляются различного рода аритмии, блокады и прочие нарушения ритма, которые требуют медицинского терапевтического, а иногда и хирургического вмешательства.

Основная масса клеток системы сердца состоит из типичных (рабочих) клеток, которые обеспечивают сокращение сердца. Механизм сравним с работой других мышц (бицепс, трицепс, мышца радужки глаза), так в мышцу поступает сигнал из атипичных кардиомиоцитов, после чего они сокращаются. При нарушении сократимости сердечной мышцы чаще всего наблюдаются различного рода отеки (легких, нижних конечностей, рук, всей поверхности тела), которые образуются из-за сердечной недостаточности.

Это способность, благодаря особому гистологическому (клеточному) строению, сохранять свою форму во все фазы сердечного цикла. (Сокращение сердца — систола, расслабление — диастола). Все вышеописанные свойства делают возможной сложнейшую, и, пожалуй, самую важную функцию — насосную. Насосная функция обеспечивает правильное, своевременное и полноценное продвижение крови по сосудам организма, без данного свойства, жизнедеятельность организма (без помощи медицинской техники) невозможна.

Предсердный натрийуретический гормон

Эндокринная функция сердечной и сосудистой системы обеспечивается секреторными кардиомиоцитами, которые встречаются преимущественно в ушках сердца и правом предсердии. Секреторные клетки вырабатывают предсердный натрийуретический гормон (ПНГ). Выработка данного гормона происходит при перегрузке и перерастяжении мышцы правого предсердия. Для чего же это делается? Ответ лежит в свойствах данного гормона. ПНГ главным образом действует на почки, стимулируя диурез, также под действием ПНГ происходит расширение сосудов и снижение артериального давления, что в купе с повышением диуреза вызывает уменьшение лишней жидкости в организме и снижает нагрузку на правое предсердие, как следствие выработка ПНГ уменьшается.

Кроме вышеописанной секреторной функции ПП, существует и биомеханическая функция. Так в толще стенки ПП лежит синусовый узел, генерирующий электрический заряд и способствующий сокращению сердечной мышцы от 60 и выше ударов в минуту. Также стоит выделить, что ПП, являясь одной из камер сердца, несет функцию передвижения крови из верхней и нижней полых вен в ПЖ, а в отверстии между предсердием и желудочком находится трехстворчатый клапан.

Механическая функция правого желудочка

ПЖ преимущественно выполняет механическую функцию. Так при его сокращении кровь попадает через легочной клапан в легочной ствол, а далее непосредственно в легкие, где происходит насыщение крови кислородом. При снижении данного свойства ПЖ происходит застой венозной крови сначала в ПП, а потом и во всех венах организма, что приводит к отекам нижних конечностей, образованию тромбов, как в ПП, так и преимущественно в венах нижних конечностей, что при отсутствии лечения может привести к жизнеугрожающиму, а в 40% случаев даже летальному состоянию — тромбоэмболия легочной артерии (ТЭЛА).

ЛП выполняет функцию продвижения уже обогащенной кислородом крови в ЛЖ. Именно с ЛП начинается большой круг кровообращения, который обеспечивает все органы и ткани организма кислородом. Главное свойство данного отдела состоит в разгрузке давления ЛЖ. При развитии недостаточности ЛП, кровь уже обогащенная кислородом забрасывается обратно в легкие, что ведет к отеку легких и при отсутствии лечения, исход чаще всего летальный.

Между ЛП и ЛЖ находится митральный клапан, именно через него кровь попадает в ЛЖ, а далее, через аортальный клапан в аорту и всему организму. В ЛЖ самое большое давление из всех полостей сердца, именно поэтому стенка ЛЖ наиболее толстая, так в норме она достигает 10-12 мм. Если левый желудочек перестает выполнять свои свойства на 100%, происходит повышенная нагрузка на левое предсердие, что также, впоследствии, может привести к отеку легких.

Главной функцией межжелудочковой перегородки служит препятствие смешивания потоков из левого и правого желудочков. При патологии МЖП возникает смешивание венозной крови с артериальной, что, впоследствии, приводит к, заболеваниям легких, недостаточности правых и левых отделов сердца, такие состояния без хирургического вмешательства чаще всего заканчиваются летально. Также в толще межжелудочковой перегородки проходит путь, проводящий электрический заряд от предсердий к желудочкам, что вызывает синхронную работу всех отделов сердечной и сосудистой системы.

Насосная деятельность желудочков

Все вышеперечисленные свойства являются очень важными для нормальной работы сердца и жизнедеятельности организма человека в целом, так как нарушение хотя бы одной из них влечет за собой различной степени угрозы жизни человека.

  1. Насосная функция — важнейшее свойство сердечной мышцы, обеспечивающая продвижение крови по организму человека, ее обогащение кислородом. Насосная функция осуществляется за счет некоторых свойств сердца, а именно:
    • автоматизм — способность спонтанной выработки электрического заряда
    • проводимость — способность проводить электрический импульс по всем отделам сердца, в определенной последовательности, от предсердий к желудочкам
    • сократимость — способность всех отделов сердечной мышцы сокращаться в ответ на проведенный импульс
    • тоничность — способность сердца сохранять свою форму во все фазы сердечного цикла.

Все эти свойства обеспечивают стабильную и беспрерывную сердечную деятельность, и при отсутствии хотя бы одного из вышеперечисленных свойств жизнедеятельность (без внешней медицинской аппаратуры) невозможна.

источник

  • Физиология
  • История физиологии
  • Методы физиологии

Кровь может выполнять свои многочисленные функции, только находясь в постоянном движении. Обеспечение движения крови является главной функцией сердца и сосудов, формирующих кровеносную систему. Сердечно-сосудистая система совместно с кровью участвует также в транспорте веществ, терморегуляции, реализации иммунных реакций и гуморальной регуляции функций организма. Движущая сила кровотока создастся за счет работы сердца, которое выполняет функцию насоса.

Способность сердца сокращаться в течение всей жизни без остановки обусловлена рядом специфических физических и физиологических свойств сердечной мышцы. Сердечная мышца уникальным образом сочетает в себе качества скелетной и гладкой мускулатуры. Так же как и скелетные мышцы, миокард способен интенсивно работать и быстро сокращаться. Так же как и гладкие мышцы, он практически неутомим и не зависит от волевого усилия человека.

Растяжимость — способность увеличивать длину без нарушения структуры под влиянием растягивающей силы. Такой силой является кровь, наполняющая полости сердца во время диастолы. От степени растяжения мышечных волокон сердца в диастолу зависит сила их сокращения в систолу.

Эластичность — способность восстанавливать исходное положение после прекращения действия деформирующей силы. Эластичность сердечной мышцы является полной, т.е. она полностью восстанавливает исходные показатели.

Способность развивать силу в процессе сокращения мышцы.

Сокращения сердца происходят вследствие периодически возникающих процессов возбуждения в сердечной мышце, которая обладает рядом физиологических свойств: автоматизмом, возбудимостью, проводимостью, сократимостью.

Способность сердца ритмически сокращаться под влиянием импульсов, возникающих в нем самом, носит название автоматизм.

В сердце различают сократительную мускулатуру, представленную поперечно-полосатой мышцей, и атипическую, или специальную ткань, в которой возникает и проводится возбуждение. Атипическая мышечная ткань содержит малое количество миофибрилл, много саркоплазмы и не способна к сокращению. Она представлена скоплениями в определенных участках миокарда, которые образуют проводящую систему сердца, состоящую из синоатриального узла, располагающегося на задней стенке правого предсердия у места впадения полых вен; атриовентрикулярного, или предсердно-желудочкового узла, находящегося в правом предсердии вблизи перегородки между предсердиями и желудочками; предсердно-желудочкового пучка (пучка Гиса), отходящего от атриовентрикулярного узла одним стволом. Пучок Гиса, пройдя через перегородку между предсердиями и желудочками, разветвляется на две ножки, идущие к правому и левому желудочкам. Заканчивается пучок Гиса в толще мышц волокнами Пуркинье.

Синоатриальныи узел является водителем ритма первого порядка. В нем возникают импульсы, которые определяют частоту сокращений сердца. Он генерирует импульсы со средней частотой 70-80 импульсов в 1 мин.

Атриовентрикулярный узел — водитель ритма второго порядка.

Пучок Гиса — водитель ритма третьего порядка.

Волокна Пуркинье — водители ритма четвертого порядка. Частота возбуждения, возникающая в клетках волокон Пуркинье, очень низкая.

В норме атриовентрикулярный узел и пучок Гиса являются только передатчиками возбуждений из ведущего узла к сердечной мышце.

Однако и они обладают автоматизмом, только в меньшей степени, и этот автоматизм проявляется лишь при патологии.

В области синоатриального узла обнаружено значительное число нервных клеток, нервных волокон и их окончаний, которые образуют здесь нервную сеть. К узлам атипической ткани подходят нервные волокна от блуждающих и симпатических нервов.

Возбудимость сердечной мышцы — способность клеток миокарда при действии раздражителя приходить в состояние возбуждения, при котором изменяются их свойства и возникает потенциал действия, а затем сокращение. Сердечная мышца менее возбудима, чем скелетная. Для возникновения возбуждения в ней необходим более сильный раздражитель, чем для скелетной. При этом величина реакции сердечной мышцы не зависит от силы наносимых раздражений (электрических, механических, химических и др.). Сердечная мышца максимально сокращается и на пороговое, и на более сильное по величине раздражение.

Уровень возбудимости сердечной мышцы в разные периоды сокращения миокарда меняется. Так, дополнительное раздражение сердечной мышцы в фазу ее сокращения (систолу) не вызывает нового сокращения даже при действии сверхпорогового раздражителя. В этот период сердечная мышца находится в фазе абсолютной рефрактерности. В конце систолы и начале диастолы возбудимость восстанавливается до исходного уровня — это фаза относительной рефрактерное/пи. За этой фазой следует фаза экзальтации, после которой возбудимость сердечной мышцы окончательно возвращается к исходному уровню. Таким образом, особенностью возбудимости сердечной мышцы является длительный период рефрактерности.

Читайте также:  Тренировки и питание для девушек для рельефа мышц

Проводимость сердца — способность сердечной мышцы проводить возбуждение, возникшее в каком-либо участке сердечной мышцы, к другим ее участкам. Возникнув в синоатриальном узле, возбуждение распространяется по проводящей системе на сократительный миокард. Распространение этого возбуждения обусловлено низким электрическим сопротивлением нексусов. Кроме того, проводимости способствуют специальные волокна.

Волны возбуждения проводятся по волокнам сердечной мышцы и атипической ткани сердца с неодинаковой скоростью. Возбуждение по волокнам мышц предсердий распространяется со скоростью 0,8-1 м/с, по волокнам мышц желудочков — 0,8-0,9 м/с, по атипической ткани сердца — 2-4 м/с. При прохождении возбуждения через атриовентрикулярный узел возбуждение задерживается на 0,02- 0,04 с — это атриовентрикулярная задержка, обеспечивающая координацию сокращения предсердий и желудочков.

Сократимость сердца — способность мышечных волокон укорачиваться или изменять свое напряжение. Она реагирует на раздражители нарастающей силы по закону «все или ничего». Сердечная мышца сокращается по типу одиночного сокращения, так как длительная фаза рефрактерности препятствует возникновению тетанических сокращений. В одиночном сокращении сердечной мышцы выделяют: латентный период, фазу укорочения ([[|систола]]), фазу расслабления (диастола). Благодаря способности сердечной мышцы сокращаться только по типу одиночного сокращения сердце выполняет функцию насоса.

Первыми сокращаются мышцы предсердий, затем слой мышц желудочков, обеспечивая тем самым движение крови из полостей желудочков в аорту и легочный ствол.

Сердечная мышца, как и всякая другая мышца, обладает рядом физиологических свойств: возбудимостью, проводимостью, сократимостью, рефрактерностью и автоматией.

· Возбудимость — это способность кардиомиоцитов и всей сердечной мышцы возбуждается при действии на нее механических, химических, электрических и других раздражителей, что находит свое применение в случаях внезапной остановки сердца. Особенностью возбудимости сердечной мышцы является то, что она подчиняется закону “все — или ничего”. Это значит, что на слабый, допороговой силы раздражитель сердечная мышца не отвечает, (т.е. не возбуждается и не сокращается) (“ничего”), а на раздражитель пороговой, достаточной для возбуждения силы сердечная мышца реагирует своим максимальным сокращением (“все”) и при дальнейшем увеличении силы раздражения ответная реакция со стороны сердца не изменяется. Это связано с особенностями строения миокарда и быстрым распространением по нему возбуждения через вставочные диски — нексусы и анастомозы мышечных волокон. Таким образом, сила сердечных сокращений в отличие от скелетных мышц не зависит от силы раздражения. Однако этот закон, открытый Боудичем, в значительной степени условен, так как на проявление данного феномена влияют определенные условия — температура, степень утомления, растяжимость мышц и ряд других факторов.

Стоит добавить, что он применим только по отношению к действию на сердце искусственного раздражителя. Боудич в эксперименте с вырезанной полоской миокарда обнаружил, что если ее ритмически раздражать электрическими импульсами одинаковой силы, то на каждое последующее раздражение мышца ответит большим сокращением до ее максимальной величины. Это явление получило название “лестницы Боудича”.

· Проводимость — это способность сердца проводить возбуждение. Скорость проведения возбуждения в рабочем миокарде разных отделов сердца неодинакова. По миокарду предсердий возбуждение распространяется со скоростью 0,8-1 м/с, по миокарду желудочков — 0,8-0,9 м/с. В атриовентрикулярной области на участке длиной и шириной в 1 мм проведение возбуждения замедляется до 0,02-0,05 м/с, что почти в 20-50 раз медленнее, чем в предсердиях. В результате этой задержки возбуждение желудочков начинается на 0,12-0,18 с позже начала возбуждения предсердий. Существует несколько гипотез, объясняющих механизм атриовентрикулярной задержки, но этот вопрос требует своего дальнейшего изучения. Однако эта задержка имеет большой биологический смысл — она обеспечивает согласованную работу предсердий и желудочков.

· Рефрактерность — состояние невозбудимости сердечной мышцы. Степень возбудимости сердечной мышцы в процессе сердечного цикла меняется. Во время возбуждения она теряет способность реагировать на новый импульс раздражения. Такое состояние полной невозбудимости сердечной мышцы называется абсолютной рефрактерностью и занимает практически все время систолы. По окончании абсолютной рефрактерности к началу диастолы возбудимость постепенно возвращается к норме — относительная рефрактерность. В это время (в середине или в конце диастолы) сердечная мышца способна отвечать на более сильное раздражение внеочередным сокращением — экстрасистолой. За желудочковой экстрасистолой, когда внеочередной импульс зарождается в атриовентрикулярном узле, наступает удлиненная (компенсаторная) пауза (рис.9.).

Рис. 9. Экстрасистола а и удлиненная пауза б

Она возникает в результате того, что очередной импульс, который идет от синусного узла, поступает к желудочкам во время их абсолютной рефрактерности, вызванной экстрасистолой и этот импульс или одно сокращение сердца выпадает. После компенсаторной паузы восстанавливается нормальный ритм сокращений сердца. Если дополнительный импульс возникает в синоатриальном узле, то происходит внеочередной сердечный цикл, но без компенсаторной паузы. Пауза в этих случаях будет даже короче обычной. За периодом относительной рефрактерности наступает состояние повышенной возбудимости сердечной мышцы (экзальтационный период) когда мышца возбуждается и на слабый раздражитель. Период рефрактерности сердечной мышцы продолжается более длительное время, чем в скелетных мышцах, поэтому сердечная мышца не способна к длительному титаническому сокращению.

Иногда отмечаются патологические режимы распространения возбуждения, при которых предсердия и желудочки возбуждаются самопроизвольно с высокой частотой и сокращаются неодновременно. Если эти возбуждения периодичны, то такую аритмию называют трепетанием, если они неритмичны —мерцанием. Как трепетание, так и мерцание желудочков вызывает наибольшую опасность для жизни.

· Сократимость. Сократимость сердечной мышцы имеет свои особенности. Сила сердечных сокращений зависит от исходной длины мышечных волокон (закон Франка–Старлинга). Чем больше притекает к сердцу крови, тем более будут растянуты его волокна и тем большая будет сила сердечных сокращений. Это имеет большое приспособительное значение, обеспечивающее более полное опорожнение полостей сердца от крови, что поддерживает равновесие количества притекающей к сердцу, и оттекающей от него крови. Здоровое сердце уже при небольшом растяжении отвечает усиленным сокращением, в то время как слабое сердце даже при значительном растяжении лишь немного увеличивает силу своего сокращения, а отток крови осуществляется за счет учащения ритма сокращений сердца. Кроме того, если по каким–либо причинам произошло чрезмерное сверх физиолочески допустимых границ растяжение сердечных волокон, то сила последующих сокращений уже не увеличивается, а ослабляется.

Сила и частота сердечных сокращений меняется и под действием различных нервно–гуморальных факторов без изменения длины мышечных волокон.

Особенностями сократительной деятельности миокарда является то, что для поддержания этой способности необходим кальций. В безкальциевой среде сердце не сокращается. Поставщиком энергии для сокращений сердца являются макроэргические соединения (АТФ и КФ). В сердечной мышце энергия (в отличие от скелетных мышц) выделяется, главным образом, в аэробную фазу, поэтому механическая активность миокарда линейно связана со скоростью поглощения кислорода. При недостатке кислорода (гипоксемия) активируются анаэробные процессы энергетики, но они только частично компенсируют недостающую энергию. Недостаток кислорода отрицательно влияет и на содержание в миокарде АТФ и КФ.

В сердечной мышце, имеется так называемая атипическая ткань, образующая проводящую систему сердца (рис. 10.).

Эта ткань имеет более тонкие миофибриллы с меньшей поперечной исчерченностью. Атипические миоциты более богаты саркоплазмой. Ткань проводящей системы сердца более возбудима и обладает резко выраженной способностью к проведению возбуждения. В некоторых местах миоциты этой ткани образуют скопления или узлы. Первый узел располагается под эпикардом в стенке правого предсердия, вблизи впадения полых вен — синоатриальный узел.

Рис. 10. Проводящая система сердца:

а — синоатриальный узел; б — предсердно-желудочковый узел; в — пучок Гиса; г — волокна Пуркинье.

Второй узел располагается под эпикардом стенки правого предсердия в области атриовентрикулярной перегородки, разделяющей правое предсердие от желудочка, и называется предсердно-желудочковым (атриовентрикулярным) узлом. От него отходит пучок Гиса, разделяющийся на правую и левую ножки, которые по отдельности идут в соответствующие желудочки, где они распадаются на волокна Пуркинье. Проводящая система сердца имеет непосредственное отношение к автоматии сердца.

Автоматия сердца — это способность ритмически сокращаться под влиянием импульсов, зарождающихся в самом сердце без каких-либо раздражений. Автоматию сердца можно наблюдать на удаленном, и помещенном в раствор Рингера, сердце лягушки. Явление автоматии сердца было известно очень давно. Его наблюдали Аристотель, Гарвей, Леонардо Да Винчи.

Долгое время в объяснении природы автоматии существовало две теории — нейрогенная и миогенная. Представители первой теории считали, что в основе автоматии лежат нервные структуры сердца, а представители второй теории связывали автоматию со способностью к ней мышечных элементов.

Взгляды на автоматию получили новые направления в связи с открытием проводящей системы сердца. В настоящее время способность к автоматической генерации импульсов в настоящее время связывают с особыми Р-клетками, входящими в состав синоатриального узла. Многочисленными и разнообразными опытами (Станниус—методом наложения лигатур, Гаскел – ограниченным охлаждением и нагреванием разных участков сердца), затем исследованиями с регистрацией электрических потенциалов было доказано, что главным центром автоматии 1 порядка, датчиком, водителем (пейсмекером) ритма сердечных сокращений является синоатриальный узел, так как в Р–клетках этого узла отмечается наибольшая скорость диастолической деполяризации и генерации потенциала действия, связанного с изменением ионной проницаемости клеточных мембран.

По удалению от этого узла способность проводящей системы сердца к автоматии уменьшается (закон градиента убывающей автоматии, открытый Гаскеллом). Исходя из этого закона, атриовентрикулярный узел обладает меньшей способностью к автоматии (центр автоматии второго порядка), а остальная часть проводящей системы является центром автоматии третьего порядка.

В нормальных условиях функционирует только автоматия синоатриального узла, а автоматия других отделов подавлена более высокой частотой его возбуждений. Это было доказано Станниусом методом наложения лигатур на разные отделы сердца лягушки. Так, если у лягушки наложить первую лигатуру, отделив венозный синус от предсердий, то сокращения сердца временно прекратятся. Затем через некоторое время или сразу после наложения второй лигатуры на предсердно–желудочковый узел начнутся сокращения предсердий или желудочка (в зависимости от того, как ляжет лигатура и куда отойдет узел), но во всех случаях эти сокращения будут иметь более редкий ритм ввиду меньшей способности к автоматии атриовентрикулярного узла.

Таким образом, импульсы вызывающие сокращения сердца, первоначально зарождаются в синоатриальном узле. Возбуждение от него распространяется по предсердиям и доходит до атриовентрикулярного узла, далее через него по пучку Гиса к желудочкам. При этом возбуждение от синоатриального узла к атриовентрикулярному по предсердиям передается не радиально, как это представлялось раньше, а по наиболее благоприятному, предпочтительному пути, т.е. по клеткам очень сходным с клетками Пуркинье.

Волокна проводящей системы сердца своими многочисленными разветвлениями соединяются с волокнами рабочего миокарда. В области их контакта происходит задержка передачи возбуждения в 30 мс, что имеет определенное функциональное значение. Одиночный импульс, пришедший раньше других по отдельному волокну проводящей системы, может вообще не пройти на рабочий миокард, а при одновременном приходе нескольких импульсов они суммируются, что облегчает их переход на миокард.

Не нашли то, что искали? Воспользуйтесь поиском:

Зависимость “сила стимула- сила сокращения”

В отличие от скелетной мышцы сила сокращения сердечной мышцы не зависит от силы раздражителя закон “всё или ничего”. В опыте изолированное сердце лягушки на допороговое раздражение вообще не отвечает, но как только сила раздражения достигает порогового уровня, возникает его максимальное сокращение (рис.5).

Дальнейшее увеличение силы раздражающего тока не изменяет величины сокращения. Подчинение сердечной мышцы закону “всё или ничего” объясняется особенностями строения миокарда, клетки которого образуют функциональный синцитий: все мышечные клетки соединены друг с другом вставочными дисками с очень низким электрическим сопротивлением и в функциональном плане представляют собой единое образование. Поэтому пороговый раздражитель приводит к возбуждению сразу всех кардиомиоцитов и развитию максимального сокращения.

Рис. 5. Независимость силы сокращений миокарда (а) от силы раздражителя (б) – закон «все или ничего». Пороговый стимул отмечен звездочкой.

Рис.6. Зависимость силы сокращений миокарда (а) от частоты стимуляции (б) – «лестница Боудича», полученная на сердце лягушки, предварительно остановленном с помощью первой лигатуры Станниуса.

Закон “всё или ничего” для миокарда не абсолютен. Если в эксперименте раздражать мышцу желудочков импульсами возрастающей частоты, не меняя их силы, то величина сокращения миокарда будет возрастать на каждый следующий стимул (лестница Боудича или хроноинотропный эффект). Объясняется такой эффект тем, что при переходе к более высокой частоте стимуляции промежутки времени между сокращениями укорачиваются, вследствие чего не происходит полного удаления ионов кальция, поступивших в клетку при очередном сокращении. В результате с каждым последующим сокращением концентрация внутриклеточного кальция возрастает и соответственно возрастает и сила сокращения (рис 6).

Возбудимость сердечной мышцы во время сокращения.

Для изучения возбудимости надо наносить раздражение электрическим током пороговой или сверхпороговой силы на сердце лягушки в разные фазы его цикла. При этом сердце не ответит на раздражение, если оно будет нанесено в период систолы, когда миокард находится в состоянии абсолютной невозбудимости, т.е. рефрактерности (рис.11). Обратите внимание, что рефрактерный период занимает всю систолу и начало диастолы (рис.7). С началом расслабления возбудимость миокарда начинает восстанавливаться, и наступает фаза относительной рефрактерности.

Рис. 7. Графики сокращения, потенциала действия и возбудимости мио карда желудочков.

Экстрасистола желудочков. Нанесение сверхпорогового раздражения в фазу относительной рефрактерности способно вызвать внеочередное сокращение желудочков  экстрасистолу. При этом пауза, следующая за желудочковой экстрасистолой, длится дольше, чем обычная, так называемая компенсаторная пауза. Большая длительность этой паузы объясняется тем, что очередной импульс из синусного узла застаёт желудочки в период рефрактерности уже полученной экстрасистолы, и нормальное их сокращение возможно только с приходом очередного импульса (рис.8).

У человека дополнительные, внеочередные импульсы, вызывающие экстрасистолу, могут возникать в норме в элементах проводящей системы или в самом миокарде желудочков при активации симпатического отдела вегетативной нервной системы (например при эмоциональном возбуждении), а также при патологических процессах в миокарде.

Итак, абсолютная невозбудимость миокарда, продолжающаяся всю систолу, делает сердце нечувствительным в этот период к дополнительным раздражениям, исключает возможность длительного непрерывного (тетанического) сокращения, и тем самым помогает сердцу работать в режиме одиночного сокращения. Длительная рефрактерность гарантирует продолжение диастолы даже при возникновении внеочередных раздражений, и создаёт условия для наполнения желудочков кровью, т.е. для поддержания минутного объёма сердца.

Рефрактерность кардиомиоцитов обеспечивает также нормальную последовательность распространения возбуждения в сердце, препятствует возникновению кругового движения возбуждения по миокарду.

рис.8. График желудочковой экстрасистолы

Стрелками отмечен момент нанесения внеочередного раздражения, треугольничками  момент поступления очередного импульса из синоатриального узла.

Синусовая экстрасистола. При эмоциональном возбуждении или под влиянием воспалительных изменений внеочередной импульс возбуждения может возникнуть в самом синусном узле, следствием которого будет полный внеочередной цикл сердца, за которым в отличие от желудочковой экстрасистолы не следует компенсаторная пауза. Понятно, что пауза перед внеочередным сокращением будет укорочена (рис. 9).

Читайте также:  Тренировки групп мышц человека

Рис.9. Синусовая экстрасистола (обозначена стрелочкой).

Сердечная мышца обладает следующими физиологическими свойствами: возбудимостью, проводимостью, сократимостью и автоматией.

Возбудимость – это способность (или свойство) реагировать на раздражение, т.е. возбуждаться. Это свойство характерно для всех возбудимых тканей (нервов, мышц, железистых клеток), но разные ткани обладают разной возбудимостью (этот вопрос более подробно рассматривается в разделе «физиология возбудимых тканей»). Любая возбудимая ткань при возбуждении меняет свою возбудимость и имеет следующие фазы: абсолютная рефрактерность (отсутствие возбудимости), относительная рефрактерность (возбудимость ниже нормы), супернормальность или экзальтация (повышенная возбудимость). Продолжительность этих фаз у разных тканей разная, и имеет, как правило, важное функциональное назначение. Так, у нервов и скелетных мышц эти фазы намного короче, чем у сердечной и гладких мышц.

Ниже приводятся схематические изображения (рис 1) изменения возбудимости в разные периоды одиночного сокращения сердечной (пунктирная линия) и скелетной (сплошная линия) мышц

Рис.1. 1-латентный период, 2-период сокращения, 3-период расслабления

а) абсолютная рефрактерность

б) относительная рефрактерность

в) фаза супернормальности (экзальтации)

а также сопоставление (рис 2) фаз рефрактерности с фазами потенциала действия скелетной (А) и сердечной (Б) мышц.

Рис. 2. 1 — латентный период, 2 — фаза деполяризации, 3 — фаза реполяризации, 3а — плато (медленная деполяризация или начальная реполяризация); а) — абсолютная рефрактерность, б) относительная рефрактерность, в) фаза супернормальности (или фаза экзальтации

Во время фазы абсолютной рефрактерности ткань не возбудима, во время относительной рефрактерности возбудимость снижена, и она не восстановилась еще до нормы. Наличие продолжительной абсолютной рефрактерности у сердечной мышцы является причиной, предохраняющей сердце от повторного возбуждения (а стало быть, сокращения) в период систолы. Сердце приобретает способность к повторному сокращению на приходящий импульс во время диастолы, т.е. в фазу относительной рефрактерности, в этот период возникает так называемая экстрасистола (дополнительная систола). После экстрасистолы следует компенсаторная пауза за счет выпадения одного естественного сокращения, так как очередной импульс попадает на абсолютную рефрактерность экстрасистолы. Это явление чаще наблюдается при желудочковой экстрасистолии и тахикардии. Экстрасистолы по происхождению могут быть наджелудочковыми (из синусного узла, предсердий или атриовентрикулярного узла) и желудочковыми. Экстрасистолия, как правило, сопровождается аритмией, которая при некоторых заболеваниях сердца (инфаркт миокарда, гипокалиемия, растяжение желудочков и т.д.) может переходить в фибрилляцию (трепетание и мерцание предсердий или желудочков). Наибольшая опасность возникновения этих явлений наблюдается тогда, когда экстрасистола попадает в так называемый «уязвимый период». Таким уязвимым местом или периодом считается фаза реполяризации желудочков и соответствует восходящей части зубца Т на ЭКГ. При наличии эктопических зон вероятность возникновения фибрилляции желудочков многократно возрастает.

Мышечная ткань предсердий и желудочков ведет себя как функциональный синцитий, а вставочные диски между кардиомиоцитами не препятствуют проведению возбуждения, и происходит одновременное возбуждение всех клеток. Поэтому следующей особенностью возбудимости сердечной мышцы является то, что сердце работает по закону «все или ничего», тогда как скелетная мышца и нервы не подчиняются этому закону (лишь отдельные волокна скелетных мышц и нервов функционируют по закону « все или ничего»).

Автоматизм. Ритмические сокращения сердца обусловлены импульсами, генерируемыми в самом сердце. Сердце лягушки, помещенное в рингеровский (физиологический) раствор может сокращаться в прежнем ритме длительное время. Изолированное сердце теплокровных животных также может сокращаться длительно, но требуется соблюдение ряда условий: пропускать (перфузировать) Рингер-Локковский раствор под давлением через сосуды сердца (канюля в аорте), tº раствора = 36-37º, через раствор пропускать кислород или просто воздух (аэрация), в растворе должна содержаться глюкоза. В норме ритмические импульсы образуются только специализированными клетками водителя ритма сердца (пейсмекера), которым является сино-атриальный узел (СА узел). Однако в условиях патологии остальные участки проводящей системы сердца способны самостоятельно генерировать импульсы. Явления автоматизма целиком и полностью зависят от проводящей системы сердца, т.е. она выполняет также функцию проведения, обеспечивает, таким образом, свойство проводимости. Как распространяется возбуждение по проводящей системе сердца к рабочему миокарду? От пейсмекера – синоатриального узла, который расположен в стенке правого предсердия у места впадения в него верхней полой вены, возбуждение вначале распространяется по рабочему миокарду обоих предсердий. Единственным путем дальнейшего распространения возбуждения является атриовентрикулярный узел. Здесь происходит небольшая задержка – 0,04-0,06 сек (атриовентрикулярная задержка) проведения возбуждения. Эта задержка имеет принципиально большое значение для последовательного (не одновременного) сокращения предсердий и желудочков. Благодаря этому кровь из предсердий может поступить в желудочки. Если бы не было этой задержки, то происходило бы одновременное сокращение предсердий и желудочков, а так как последние развивают значительное полостное давление, то кровь не смогла бы поступить из предсердий в желудочки. Пучок Гиса, его левая и правая ножки и волокна Пуркинье проводят импульсы со скоростью примерно 2 м/с, и различные участки желудочков возбуждаются синхронно. Скорость распространения импульса от субэндокардиальных окончаний волокон Пуркинье по рабочему миокарду составляет около 1 м/с. Средний ритм сердца в норме, а стало быть, количество импульсов в синоатриальном узле составляет 60-80 в 1 мин. При блокаде передачи импульсов от СА узла пейсмекерную функцию берет на себя АВ-узел с ритмом около 40-50 в 1 мин. Если будет выключен и этот узел, то пейсмекером становится пучок Гиса, при этом частота сердечных сокращений будет 30-40 в минуту. Но даже волокна Пуркинье могут спонтанно возбуждаться (20 в 1 мин.) при выпадении функции пучков Гиса.

СА-узел называют номотопным (нормально расположенным) центром автоматии, а очаги возбуждения в остальных отделах проводящей системы сердца – гетеротопными (ненормально расположенными) центрами. Эти ритмы возникают не за счет основного водителя (СА-узла) и они носят название «заместительных ритмов». Кроме перечисленных гетеротопных центров в патологии (инфаркт миокарда, гипокалиемия, растяжение) могут появляться эктопические водители ритма сердца. Они локлизуются за пределами проводящей системы сердца. При полном исчезновении автоматизма сердца применяются искусственные водители ритма сердца, т.е. искусственное электрическое раздражение желудочков либо путем подачи тока через интактную грудную клетку, либо через имплантированные электроды. Такое искусственное раздражение сердца иногда применяется годами (миниатюрные водители ритма сердца, расположенные под кожей и работающие от батареек). Способность сердца возбуждаться за счет автоматизма имело большое значение для разработки стратегии и тактики хирургической пересадки сердца. Первоначально эти исследования были проведены Кулябко, Неговским и Синицыным.

СОКРАТИМОСТЬ. Сердце сокращается по типу одиночного сокращения, т.е. одно сокращение на одно раздражение. Скелетная мышца сокращается тетанически. Такая особенность сердечной мышцы обусловлена продолжительной абсолютной рефрактерностью, которая занимает всю систолу. Сокращение предсердий и желудочков имеет последовательный характер. Сокращение предсердий начинается в области устьев полых вен, и кровь движется только в одном направлении, а именно в желудочки через предсердно-желудочковые отверстия. В это время устья полых вен сжимаются, и кровь поступает в желудочки. В момент диастолы желудочков атриовентрикулярные клапаны открываются. При сокращении желудочков кровь устремляется в сторону предсердий и захлопывает створки этих клапанов. Клапаны не могут открыться в сторону предсердий, т.к. этому препятствуют сухожильные нити, которые прикрепляются к сосочковым мышцам. Повышение давления в желудочках при их сокращении приводит к изгнанию крови из правого желудочка в легочную артерию, а из левого желудочка – в аорту. В устьях этих сосудов имеются полулунные клапаны. Эти клапаны расправляются в момент диастолы желудочков за счет обратного тока крови в сторону желудочков. Эти клапаны выдерживают большое давление (особенно аортальный) и не пропускают кровь из аорты и легочной артерии в желудочки. Во время диастолы предсердий и желудочков давление в камерах сердца падает и кровь из вен поступает в предсердия, а затем в желудочки.

Возбудимость – возникновение возбужд. при действии на него электрич., химич., термич. и др. раздражителей. В основе процесса лежит появление отрицательного электрич. потенциала в первоначально возбужденном участке, при этом сила раздражителя должна быть не менее пороговой. Степень сокращения серд. мышцы зависит не только от силы раздражителя, но и от величины ее предварительного растяжения, а также от температуры и состава питающей ее крови. В начальном периоде возбуждения серд. мышца рефрактерна к повторным раздражениям, что составляет фазу абсолютной рефрактерности, равную по времени систоле сердца. Вследствие достаточно длит. периода абсолютной рефракт. серд. мышца не может сокращаться по типу тетануса. С началом расслабления возб. сердца восстанавливается и начинается фаза относит. рефракт. Поступление в этот момент дополнит. импульса вызывает внеочередное сокращ. сердца (экстрасистолу). Период, следующ. за экстрасистолой, длится больше, чем обычно (компенсаторн. пауза). После фазы относит. рефракт. наступает период повыш. возбудим. (импульсы небольш. силы могу вызвать сокращ. сердца).
Проводимость – обеспеч. распр. возбужд. от клеток водителей ритма по всему миокарду. ПД, возникающий в одной мыш. кл., является раздражителем для др. Проводимость в разн. участках сердца неодинакова, зависит о структурных особенностей миокарда и проводящей с-мы, толщины миокарда, температуры, ур-ня гликогена, кислорода, микроэл. в серд. мышце. Сократимость – обуславливает увеличение напряжения или укорочение ее мыш. волокон при возбуждении. Сокращение – ф-ция миофибрилл. Сила сокращения сердца прямо пропорциональна длине мыш. волокон, т.е. степени их растяжения при измен. величины потока венозной крови (чем сильнее сердце растянуто во ремя диастолы, тем сильнее оно сокращается во время систолы – закон сердца Франка-Старлинга). Автоматия – способность сердца к ритмич. сокращению без вн. раздражений под влиянием импульсов, возникающих в самом сердце. Возбуждение в сердце возникает в месте впадения полых вен в пп (синоатриальный узел – главный водитель ритма). Далее возб. по предсердиям распр. до атриовентрикулярного узла (межпредсердная перегородка пп), затем по пучку Гиса, его ножкам и волокнам Пуркинье оно провод. к желудочкам. Автоматия обусл. измен. мембр. потенциалов в водителе ритма, что связ. со сдвигом С К и Nа по обе стороны деполяризованных клет. мембран. На хар-р проявления автоматии влияет содерж. Са в миокарде, рН внутр. ср. и Т, некот. гормоны.

6. Электрические явления в сердечной мышце. Электрокарди­ограмма и ее основные показатели. Изменение показателей ЭКГ при мышечной деятельности.

При возб. серд. мышцы возникающ. на ее пов-ти эл. потепнциалы созд. в окр. тканях динамич. эл. поле, кот. может быть зарегистр. с пов-ти тела. Регистрация биоэлектрич. явл., возникающ. при возб. сердца – ЭКГ. В норме на ЭКГ различают 6 зубцов. Зубец Р – процесс возб. в миокарде предсердий. Возб. пп происх. раньше лп. на 0,02-0,03с, поэтому правая половина зубца Р до вершины – возб. пп, вторая – лп. Продолжит-ть – 0,11с, реполяризация п не выражена. Зубец Q – первый зубец желуд. кпл, всегда обращен книзу, отражает процесс распр. возб. из атриавентрикулярного узла на межжелуд. перегородку. Наиб. непост. зубец. Интервал Р-Q – атриовентрикулярная задержка. Продолж-ть завис. от частоты серд. ритма, в норме – 0,12-0,20с. Зубец R – напр. вверх. Отраж. процессы деполяризации стенок лж и пж и верхушки сердца. Зубец S – непост. отрицат. зубец. Отраж. несколько более поздний охват возбужд. отдаленных участков миокарда. Зубец Т – процесс быстрой реполяризации миокарда ж. От 0,1-0,25с. QRST – желуд. кпл., отраж. процесс распр. возб. и прекращения его в миокарде ж. Интервал ST – отраж. сост. уравновешенности потенциалов всех уч. миокарда и период медленной реполяризации. Интервал Т-Р – диастола. Зубец U – после Т чз 0,01-0,04с. Его появл. связ. с эл. потенциалами, возникающими при растяж. желуд. в нач. фазе диастолы или с явл. следовой реполяризации волокон проводящей с-мы сердца. Интервал Q-T – эл. систола ж. ЭКГ регистр. по 3 отведениям – 1 – прав. рука-лев. рука, 2 – прав. рука-лев.нога, 3 – лев.рука-лев.нога. Для нормальной ЭКГ спортсмена характерны наличие умеренной и выраженной синусовой брадикардии и аритмии, удлинение электрической систолы сердца ( интервал О.Т).

7. Систолический, резервный и остаточный объемы крови в желудочках. Минутный объем крови. Изменение этих по­казателей при мышечной деятельности.

СО – накопленная кровь в желудочках во время диастолы, выталкиваемая при каждом сокращ. желуд. в аорту и лег. ствол. В покое СО – 50-70мл, при мыш. раб. – 150-180мл за счет усиления мощности сокращ. серд. мышцы. МОК – кол-во крови, выбрасываемое одним ж. за 1мин. МОК=СО*ЧСС в 1 мин. МОК – 3-5л. При напряж. физ. раб. – 25-30л. Оставшийся в сердце после систолы резервный объем крови является своеобразным депо, обеспечивающим увеличение сердечного выброса при ситуациях, в которых требуется быстрая интенсификация гемодинамики (например, при физической нагрузке). Остаточный объем — это то количество крови, которое не может быть вытолкнуто из желудочка даже при самом мощном сердечном сокращении.

8. Частота сердечных сокращений в покое. Методики исследо­вания этого показателя и его изменения при мышечной работе.

ЧСС в покое — 60-80 уд/мин. Менее 60 – брадикардия, более 90 – тахикардия. Измеряют – пальпаторно, сфигмограмма, пульсоксиметрия. При мыш. раб. ЧСС возрастает (до 220).

9. Артериальное давление и факторы, его определяющие. Ме­тодики измерения артериального давления, его изменение при физических нагрузках.

Средн. арт. давл. – та величина давл., кот. могла бы обеспечить течение крови в артериях без колебаний давления при систоле и диастоле. Величина АД зависит от скоратит. силы миокарда, величины МОК, длины, емкости и тонуса сосудов, вязкости крови. Давление будет тем выше, чем сильнее сокращения сердца и чем больше тонус сосудов. Измеряют прямым (введение иглы в артерию) и косвенным способами (Рива-Роччи).

10. Давление крови и скорость кровотока в разных отделах сосудистой системы. Объемная и линейная скорость крово­тока. Время кругооборота крови.

Объемная скорость кровотока – объем крови, протекающий в единицу времени. Зависит от просвета сосудов (в аорте самая высокая, в капилляре – низкая), но в одинаковых сосудах одинакова. Высокое сопротивление артериол и капилляров обуславливает то, что на этом участке давление врои падает. Линейная скорость кровотока – расстояние, которое частица крови проходит за ед. времени. Не меняется по ходу сосуд. русла, зависит только от общей поперечной площади сосудов одного калибра (чем больше площадь, тем меньше скорость). Лиин. скор. максимальна в центре сосуда и минимальна у его стенок в связи с наличием сил трения межу кровью и стенкой сосуда. Время полного кругооборота крови в покое – 21-23с, при тяж. раб. – 8-10с.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: При сдаче лабораторной работы, студент делает вид, что все знает; преподаватель делает вид, что верит ему. 9454 — | 7326 — или читать все.

85.95.179.227 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник