Меню Рубрики

Клетки мышц гладкой мускулатуры

Особенности структуры.Гладкая мускулатура представлена практически во всех тканях и органах: сосуды, воздухоносные пути, желудочно-кишечный тракт, мочеполовая система и т.д.

Основной структурной единицей гладких мышц является гладкомышечная клетка (ГМК), имеющая обычно удлиненную веретенообразную форму. ГМК располагаются параллельно и последовательно, образуя мышечные пучки или тяжи, и мышечные слои. Их размеры зависят от вида и функционального состояния гладкой мышцы: 20-500 мкм в длину и 5 – 20 мкм в толщину в средней части клетки.

Снаружи ГМК покрыта сарколеммой, состоящей, как и у других мыщц, из плазматической и базальной мембраны. Под электронным микроскопом в плазматической мембране видны своеобразные впячивания, колбовидной формы, так называемые кавеолы и электронноплотные участки. Некоторые исследователи считают, что эти тяжи являются местом прикрепления актиновых протофибрилл.

Хотя большая часть поверхности одной мышечной клетки отделена от соседних мышечных клеток пространством в 100 нм и более (межклеточное пространство), которое заполнено коллагеновыми и эластиновыми волокнами, фибробластами, капиллярами и др., для ГМК характерны и другие виды взаимодействия:

1. Нексусы: щель между контактирующими мембранами соседних клеток очень узка – 2 – 3 нм, в мембранах нексусов контактирующих клеток обнаруживаются кластерные образования и внутримембранные частицы размером 9 нм. Полагают, что эти частицы представляют собой межклеточные ионные каналы.

2. Десмосомоподобная связь. В областях этих контактов обнаруживается наличие участков электронно-плотного вещества. В висцеральных мышцах ширина щели между контактирующими мембранами при этом типе контактов может достигать 20 – 60 нм. Полагают, что этот вид контактов служит в основном для механического соединения клеток.

3. Третий тип связи между клетками – это связь с помощью отростков, которыми одна клетка входит в соответствующее углубление другой. Ширина щели между мембранами соседних клеток в этом случае 10 – 20 нм. Полагают, что эти связи важны для передачи механической силы между клетками.

Пассивные электрические свойства гладких мышц

Гладкомышечная ткань, несмотря на дискретность с морфологической точки зрения, является функциональным синцитием, в котором плазматические мембраны многих мышечных клеток представляют собой как бы единую непрерывную мембрану одной большой мышечной клетки. Поэтому, основные показатели ГМК можно сравнить с кабельным свойствами аксона:

1. постоянная времени (λ) 100-300 мс и постоянная длины (τ) 1-3 мм;

2. сопротивление и емкость мембраны 0,6 -2,9 ГОм и 30 – 40 пкФ, соответственно;

3. удельное сопротивление и емкость мембраны 10–50 кОм/см 2 и 1,3-3 мкФ/см 2 , соответственно;

4. удельное сопротивление миоплазмы порядка 250 Ом/см.

Потенциал покоя (ПП) различных ГМК находится в пределах от –50 до –60 мВ. В его образовании участвуют главным образом ионы K + , Na + и Cl — . Особенностью ионного состава ГМК является большая внутриклеточная концентрация ионов хлора и натрия.

Тот факт, что величина ПП ГМК значительно отличается от равновесного калиевого потенциала (-55 мВ для ГМК taenia coli, тогда как Ек=-90 мВ), объясняется в первую очередь тем, что мембрана ГМК обладает так же относительно высокой проницаемостью для ионов натрия и хлора. Соотношение проницаемости мембраны ГМК для этих ионов равно: PK😛Na😛Cl=1:0,16:0,61. Расчеты величины ПП по формуле Гольдмана-Ходжкина-Катца с учетом этих проницаемостей и потенциалов равновесия для соответствующих ионов (EK=-89 мВ; ENa=+62 мВ; ECl=-22 мВ) дали величину потенциала покоя равную только –37 мВ. Таким образом, измеренная величина ПП оказалась почти на 20 мВ выше расчетной.

Роль ионов кальция в этом мала, так как они обладают низкой проницаемостью через мембрану ГМК, однако они существенно влияют на проницаемость мембраны к другим ионам и, в частности к ионам Na + . Удаление ионов кальция из омывающего раствора сопровождается деполяризацией клеток и существенным уменьшением сопротивления мембраны.

Другой причиной этого расхождения может быть участие в образовании ПП электрогенного компонента натриевого насоса, однако ток, генерируемый натриевым насосом, может создавать потенциал лишь около 5 мВ. Еще одной причиной расхождения между расчетными и теоретическими значениями ПП может быть высокая внутриклеточная концентрации ионов хлора.

Потенциал действия (ПД) гладких мышц позволяет разделить их по способности его генерировать в ответ на пороговую и сверхпороговую стимуляцию на:

1. Фазные – быстро сокращающиеся мышцы, способны генерировать ПД, имеют относительно высокую скорость укорочения и часто обладают спонтанной электрической и сократительной активностью. Их ответ на деполяризацию мембраны является относительно быстрым, но носит транзиторный характер. Примером является: ГМК пищеварительного тракта, матки, мочевыводящих путей, воротной вены.

2. Тоническиегладкие мышцы, как правило, отвечают на стимуляцию агонистом градуальной деполяризацией, не генерируют ПД и спонтанную сократительную активности, имеют низкую скорость укорочения, но могут эффективно поддерживать сокращенное (тоническое) состояние в течение продолжительного времени.

ПД различных ГМК имеют форму от простых спайковых потенциалов длительностью 20 – 50 мс (миометрий, воротная вена, кишка), до сложных – с плато и осцилляциями на них, длительностью до 1 сек и больше (мочеточник, антральная часть желудка).

Особенностью электрогенеза ГМК является то, что главную роль в генерации ПД играют ионы Ca 2+ . Эти ионы ответственны за генерацию деполяризующего входящего тока, который состоит из двух компонентов: 1.начального инактивирующегося – достигнув своего максимума, он не держится на постоянном уровне, а медленно уменьшается;

2.последующего неинактивирующегося, который не инактивируется при больших деполяризующих смещениях мембранного потенциала.

Инактивация входящего кальциевого тока зависит не столько от величины мембранного потенциала, сколько от концентрации ионов кальция внутри гладкомышечной клетки. Функциональное значение этого явления состоит, по-видимому, в том, что ионы кальция, входящие в ГМК, через отрицательную обратную связь регулируют интенсивность их возбуждения, а следовательно, и поступление в клетку самих ионов кальция.

Ионы калия, ответственные за генерацию выходящего гиперполяризующего тока, так же оказывают влияние на амплитуду и продолжительность ПД в зависимости от концентрации ионов кальция внутри ГМК. Хотя калиевый ток продолжает увеличиваться и при всех возрастающих положительных смещениях мембранного потенциала.

Все воздействия, ведущие к угнетению калиевой проводимости, способствуют возникновению ПД в тех ГМК, которые в исходном состоянии не способны генерировать ПД. Это объясняет отсутствие ПД в тонических мышцах. В нормальных условиях мембрана этих ГМК обладает большой калиевой проводимостью мембраны, препятствующая развитию регенеративной деполяризации.

ПД ГМК, состоящие из начального быстрого пикового компонента и последующего плато, имеют более сложную ионную природу. Например, в ГМК мочеточника начальный пиковый компонент имеет преимущественно кальциевую природу, тогда как последующий медленный компонент плато – преимущественно натриевую.

Спонтанная активность гладких мышц, имеющая миогенную природу, имеет два основных типа:

1. Повторно возникающие ПД различной частоты и степени регулярности, не сопровождающиеся длительной стойкой деполяризацией ГМК. В основе лежит способность определенной группы ГМК генерировать так называемые генераторные потенциалы (предпотенциалы). Они обнаруживаются при внутриклеточном микроэлектродном отведении в виде небольшой медленной деполяризации, которая достигнув порога возбуждения переходит в быстро нарастающую фазу деполяризации ПД.

2. Медленные волны деполяризации могут быть различными по форме, амплитуде (10 – 30 мВ), продолжительности (2 – 10 с), частоте (1 – 18 колебаний в минуту), скорости распространения (до 8 см/сек). Предполагается, что эти волны первично возникают в особых пейсмекерных мышечных клетках. Когда медленная волна достигает порога возбуждения, могут возникать потенциалы действия, частота которых зависит от амплитуды волны.

Особенности сократительного аппарата ГМК обусловлена следующим:

2. Незначительным объемом СПР (2 – 7 % объема цитоплазмы).

Сократительный аппарат ГМК представлен миозиновыми и актиновыми протофибриллами, а так же рядом регуляторных белков: киназой легких цепей миозина, фосфатазой легких цепей миозина, тропомиозином, кальдесмоном, кальпонином. Соотношение актиновых и миозиновых нитей в ГМК колеблется от 1:5 до 1:27, что заметно больше чем в скелетных.

Молекула гладкомышечного миозина состоит из двух тяжелых цепей и двух пар легких цепей – регуляторных с массой 20 кДа (РЛЦ) и существенных с массой 17 кДа (ЛЦ).

Миозин ГМК отличается от миозина скелетных мышц размером (толщина 12–15 нм, длина 2,2 мкм), формой, аминокислотным составом, растворимостью, чувствительностью к ферментам, солям и денатурации, более низкой (в 10 раз) АТФ-азной активностью.

Актиновые протофибриллы ГМ почти не отличаются от исчерченных. Они имеют простую удлиненную форму, диаметр их 6 – 8 нм. На поперечном срезе актиновые протофибриллы имеют круглую форму. Иногда обнаруживается гесагональное расположение тонких протофибрилл относительно толстых, как и в исчерченных мышечных волокнах.

В состав актиновых протофибрилл ГМК входят актин, тропомиозин и кальдесмон. Из тропомиозина ГМК выделен белок леотонин, который, по- видимому, выполняет функции аналогичные тропонину С скелетных мышц. Актиновые протофибриллы содержат так же ряд дополнительных минорных и модулирующих белков: филамин и винкулин, которые участвуют в прикреплении тонких протофибрилл к плотным тельцам мембраны, а, кроме того, участвуют в активации актомиозиновой АТФазы и в ряде других процессов.

В ГМК, помимо миозиновых и актиновых протофибрилл имеются так называемые промежуточные протофибриллы, которые образуют своеобразную внутриклеточную сеть и связывают между собой плотные тельца плазматической мембраны и миоплазмы.

Предполагается, что актиновые и миозиновые протофибриллы объединены в миофибриллы, простирающиеся на относительно небольшое расстояние под углом к длинной оси мышечной клетки. Своими концами миофибриллы прикреплены к плотным тельцам плазматической мембраны (в состав которых входит белок α-актин), являющимися аналогами z-пластинок скелетных мышечных волокон.

Киназа легких цепей миозина – фермент, содержащий:

А) каталитический домен, в котором находятся участки связывания АТФ и регуляторных легких цепей миозина.

Б) регуляторный домен, содержащий участок связывания комплекса кальций-кальмодулин.

В) автоингибиторную псевдосубстратную последовательность, которая в отсутствии комплекса кальций-кальмодулин взаимодействует с каталитическим центром и блокирует фосфотрансферазную реакцию.

Фосфатаза легких цепей миозина – это фермент, относящийся к фосфатазам 1 типа, состоит из каталитической и регуляторной субъединиц.

Тропомиозин в ГМК содержится в количестве 1:14 по отношению к актомиозину, он препятствует взаимодействию миозина с актином.

Кальдесмон – регуляторный белок, связан с филаментами актина, расположен непосредственно вдоль тропомиозина в канавке, формируемой гантелеобразными молекулами актина. Функция кальдесмона заключается в удержании тропомиозина в положении, препятствующем взаимодействию миозина с активным центром актина, а так же препятствии продвижения филаментов актина по миозину.

Кальпонин – актин- и кальмодулин-связывающий белок, относительно специфичный для гладкой мускулатуры. Предполагается, что кальпонин участвует в кальций-зависимой регуляции сокращения, а его прямое фосфорилирование протеинкиназой С вносит вклад в повышение кальциевой чувствительности ГМ. Он расположен на актиновых филаментах, ингибирует АТФ-азу актомиозина и подвижность актиновых филаментов вдлоь миозина.

Электромеханическое сопряжение в ГМК представляет цепь событий, ведущих к активации сокращения. Как и в скелетных мышцах, запускается увеличением концентрации ионизированного кальция в миоплазме выше10 -7 М. Максимальное сокращение ГМК наблюдается при концентрации -10-5 М.

Особенности. Так как при удалении ионов Са 2+ из внешней среды или добавлении блокаторов кальциевого тока угнеталась как электрическая так и сократительная активность ГМК, значит развитие сопряжения возбуждения-сокращения обеспечивается внеклеточными ионами Са 2+ , участвующими в генерации ПД.

Основные пути поступления ионов кальция в ГМК:

1.Кальциевые каналы плазматической мембраны:

А.Потенциал-зависимые инактивирующиеся кальциевые каналы, ответственные за генерацию потенциалов действия.

Б.Потенциал-зависимые неинактивирующиеся кальциевые каналы, обеспечивающие станционарный ток ионов кальция через деполяризованную мембрану.

В.Хемочувствительные (рецептор-управляемые) кальциевые каналы, открывающиеся при активации мембранных рецепторов.

2. Немитохондриальное депо:

А.Саркоплазматических ретикулум (СПР).

Основные пути удаления ионов кальция из ГМК:

1. Кальциевые насосы плазматической мембраны и СПР.

Молекулярные механизмы сокращения ГМК.

Основным акцептором Са 2+ в цитоплазме ГМК является кальмодулин, который после связывания 4 ионов кальция взаимодействует с регуляторными белками – киназой легких цепей миозина и кальдесмоном. Активированная таким образом киназа легких цепей миозина фосфорилирует регуляторные легкие цепи миозина и тем самым активирует Mg 2+ -зависимую АТФ-азу миозина, тем самым, осуществляя сокращение актин-зависимым способом.

Однако в покоящейся мышце участки взаимодействия с миозином экранированы лежащим вдоль актинового тяжа комплексом тропомиозина с кальдесмоном. Поэтому вторым необходимым условием активации актомиозина является такое изменение конформации кальдесмона, которое, по все видимости, освобождает тропомиозин, следствием чего является экспонирование миозин-связывающих участков на актине. Это происходит при взаимодействии кальдесмона с комплексом кальций-кальмодулин, или сходным с ним другим кальций-связывающим белком.

Таким образом, развитие сокращения гладких мышц требует одновременной активации как миозина путем его прямого фосфорилирования, так и актина путем устранения ингибирующего действия кальдесмона. То есть при высокой степени активации миозина кальдесмон может лишь тормозить, но не способен полностью блокировать его кооперативное связывание с актином.

Снижение внутриклеточной концентрации кальция сопровождается диссоциацией комплексов кальмодулина с киназой легких цепей миозина и кальдесмоном, ее инактивацией и восстановлением ингибирующего действия кальдесмона. Последующее дефосфорилирование легких цепей миозина специфичной, кальций-независимой фосфотазой легких цепей миозина и переход тонких филаментов в неактивное состояние определяет расслабление ГМК. Как и в случае активации сокращения, основным условием релаксации является дефосфорилиривание миозина, тогда как кальдесмон-зависимая инактивация тонких филаментов может ускорять расслабление.

Однако хорошо известно, что сила сокращения ГМК не всегда прямо пропорциональна внутриклеточной концентрации ионов кальция. Изменяя чувствительность сократительного аппарата ГМК к ионам кальция при его фактическом постоянстве, можно как бы модулировать изменения внутриклеточного уровня кальция. В настоящее время рассматриваются несколько механизмов, обеспечивающих увеличение кальциевой чувствительности сократительного аппарата.

1. Механизм связанный с активацией протеинкиназы С диацилглицеролом. Мишенями протеинкиназы С могут быть все основные белки регуляторы гладкомышечного сокращения – киназу и фосфорилазу легких цепей миозина, кальдесмон и регуляторные цепи миозина:

2. Активация мономерных G-белков семейства Rho и ингибирующим фосфорилированием фосфорилазы легких цепей миозина Rho-протеинкиназой.

3. Феномен защелки. Этот механизм постулирует специфичное для ГМК образование нециклирующих дефосфорилированных актомиозиновых мостиков. Причем миозин дефосфорилируется в составе уже сформированных и находящихся в состоянии сильного связывания мостиков, что приводит к существенному уменьшению константы скорости диссоциации головок миозина и образованию так называемых защелкнутых мостиков.

Читайте также:  Комплекс упражнений на мышцы грудной клетки

Однако in vivo, тонический сократительный ответ ГМК достигается при комбинации всех механизмов.

Сократительная и электрическая активность ГМК регулируется множеством физиологически и биологически активных веществ. Реализация их эффектов на гладкомышечные клетки осуществляется с участием систем вторичных посредников.

Активация цАМФ-зависимой сигнальной системы угнетает сокращения ГМК из-за:

1. Повышения калиевой проводимости мембраны – ее гиперполяризация.

2. Стимуляции работы кальциевых насосов плазматической мембраны и СПР.

3. Снижение сродства фосфорилированной киназы легких цепей миозина к кальмодулину.

4. Снижения чувствительности сократительного аппарата ГМК к ионам кальция.

5. Активации работы натрий-калиевой АТФазы.

Активация кальциевой сигнальной системы:

1. Стимулирует работу кальциевого насоса плазматической мембраны и СПР.

2. Комплекс кальций-кальмодулин способен потенцировать кальций-зависимую калиевую проводимость мембраны ГМК

3. Комплекс кальций-кальмодулин участвует в кальций-зависимой инактивации кальциевых каналов.

Сигнальная система, связанная с метаболизмом мембранных фосфоинозитидов.

1. Ионозитол-1,4,5,-трифосфат индуцирует освобождение Са 2+ из СПР.

2. Стимулирует деятельность кальциевого насоса, обеспечивая реабсорбцию кальция.

3. Активация протеинкиназы С оказывает угнетающее влияние на кальциевые каналы, метаболизм мембранных фосфоинозитидов, снижает сродство рецепторов к агонистам рецепторов.

4. Активация протеинкиназы С повышает калиевую проводимость мембраны из-за активации натрий-протонного обмена.

Активация цГМФ-зависимой сигнальной системы связана с метаболизмом оксида азота и вызывает:

1. Модулирующее влияние на кальциевую проводимость мембраны

2. Снижает сродство киназы легких цепей миозина к кальмодулину.

3. Увеличивает калиевую проводимость мембраны

4. Ингибирует активность некоторых изоформ протеинкиназы С

5. Снижает активность фосфолипазы С

6. модулирует активность натрий-калиевого насоса

Особенности биомеханики сокращения ГМК.

Потребление АТФ гладкомышечными клетками (у теплокровных) животных в сокращенном состоянии почти в 1000 раз меньше чем в скелетных мышцах.

Сила, развиваемая гладкой мышцей, определяется следующими факторами

1. агентом, вызывающим активность

2. концентрацией этого агента

3. начальной длинной мышцы.

Имеется оптимальная длина L мышцы, при которой развиваемая ей сила, достигает максимума при действии агониста в данной концентрации.

В отличие от скелетной мышцы, при длинах меньших L ГМ генерирует большую силу, чем скелетная, а при длинах больших, чем L, активная сила ГМ падает более полого, чем скелетной.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Студент — человек, постоянно откладывающий неизбежность. 10559 — | 7323 — или читать все.

195.133.146.119 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Ткань — это совокупность схожих по строению клеток, которые объединены общими функциями. Практически все многоклеточные организмы состоят из разных типов тканей.

У животных и человека в организме присутствуют следующие типы тканей:

Эти группы объединяют по несколько разновидностей. Так, соединительная ткань бывает жировой, хрящевой, костной. Также сюда относятся кровь и лимфа. Эпителиальная ткань существует многослойная и однослойная, в зависимости от строения клеток можно выделить также плоский, кубический, цилиндрический эпителий и т. д. Нервная бывает только одного вида. А о мышечном типе ткани мы поговорим подробнее в этой статье.

В организме всех животных выделяют три ее разновидности:

  • гладкая мускулатура;
  • поперечно-полосатые мышцы;
  • сердечная мышечная ткань.

Функции гладкой мышечной ткани отличаются от таковых у поперечно-полосатой и сердечной, поэтому другое у нее и строение. Давайте рассмотрим подробнее структуру каждого вида мускулатуры.

Так как все три вида относятся к одному типу, у них есть много общего.

Клетки мышечной ткани называются миоцитами, или волокнами. В зависимости от разновидности ткани, они могут иметь различную структуру.

Мышечная ткань, фото которой можно увидеть ниже, практически не имеет межклеточного вещества.

Еще одним общим признаком всех видов мышц является то, что они способны сокращаться, однако у разных видов этот процесс происходит индивидуально.

Клетки гладкой мышечной ткани, как и поперечно-полосатой и сердечной, обладают вытянутой формой. Кроме того, в них есть особые органоиды, которые называются миофибриллы, или миофиламенты. В них содержатся сократительные белки (актин, миозин). Они необходимы для того, чтобы обеспечить движение мышцы. Обязательным условием функционирования мускула, кроме наличия сократительных белков, также является присутствие в клетках ионов кальция. Поэтому недостаточное или избыточное употребление продуктов с высоким содержанием данного элемента может привести к некорректной работе мускулатуры — как гладкой, так и поперечно-полосатой.

Кроме того, в клетках присутствует еще один специфический белок — миоглобин. Он необходим для того, чтобы связываться с кислородом и запасать его.

Что касается органоидов, то кроме наличия миофибрилл особенным для мышечных тканей является содержание большого количества в клетке митохондрий — двумембранных органоидов, отвечающих за клеточное дыхание. И это неудивительно, так как мышечному волокну для сокращения необходимо большое количество энергии, вырабатываемой при дыхании митохондриями.

В некоторых миоцитах также присутствует более чем одно ядро. Это характерно для поперечно-полосатой мускулатуры, в клетках которой может содержаться около двадцати ядер, а иногда эта цифра доходит и до ста. Это связано с тем, что волокно поперечно-полосатой мышцы сформировано из нескольких клеток, объединенных впоследствии в одну.

Данный тип ткани еще называют скелетной мускулатурой. Волокна этого типа мышц длинные, собранные в пучки. Их клетки могут достигать нескольких сантиметров в длину (вплоть до 10-12). В них содержится много ядер, митохондрий и миофибрилл. Основная структурная единица каждой миофибриллы поперечно-полосатой ткани — саркомер. Он состоит из сократительного белка.

Главная особенность этой мускулатуры заключается в том, что она может контролироваться сознательно, в отличие от гладкой и сердечной.

Волокна данной ткани прикрепляются к костям с помощью сухожилий. Именно поэтому такие мышцы и называются скелетными.

Гладкие мышцы выстилают некоторые внутренние органы, такие как кишечник, матка, мочевой пузырь, а также сосуды. Кроме того, из них формируются сфинктеры и связки.

Гладкое мышечное волокно не такое длинное, как поперечно-полосатое. Но толщина его больше, чем в случае со скелетными мускулами. Клетки гладкой мышечной ткани обладают веретоноподобной формой, а не нитевидной, как миоциты поперечно-полосатой.

Структуры, которые обесечивают сокращение гладких мышц, называются протофибриллами. В отличие от миофибрилл, они обладают более простой структурой. Но материал, из которого они построены, — все те же сократительные белки актин и миозин.

Митохондрий в миоцитах гладкой мускулатуры также меньше, чем в клетках поперечно-полосатой и сердечной. Кроме того, в них содержится только одно ядро.

Некоторые исследователи определяют ее как подвид поперечно-полосатой мышечной ткани. Их волокна и вправду во многом похожи. Клетки сердца — кардиомиоциты — также содержат несколько ядер, миофибриллы и большое количество митохондрий. Данная ткань, как и скелетные мышцы, способна сокращаться намного быстрее и сильнее, нежели гладкая мускулатура.

Однако основной особенностью, отличающей сердечную мышцу от поперечно-полосатой, является то, что она не может контролироваться сознательно. Сокращение ее происходит только автоматически, как и в случае с гладкими мышцами.

В составе сердечной ткани, кроме типичных клеток, присутствуют также секреторные кардиомиоциты. Они не содержат в себе миофибрилл и не сокращаются. Эти клетки отвесают за выработку гормона атриопептина, который необходим для регуляции артериального давления и контроля объема циркулирующей крови.

Основная их задача — перемещение тела в пространстве. Также это перемещение частей тела относительно друг друга.

Из других функций поперечно-полосатых мышц можно отметить поддержание позы, депо воды и солей. Кроме того, они выполняют защитную роль, что особенно касается мышц брюшного пресса, предотвращающих механическое повреждение внутренних органов.

К функциям поперечно-полосатой мускулатуры можно также причислить регуляцию температуры, так как при активном сокращении мышц происходит выделение значительного количества тепла. Вот почему при перемерзании мышцы начинают непроизвольно дрожать.

Мускулатура данного вида выполняет эвакуаторную функцию. Она заключается в том, что гладкие мышцы кишечника проталкивают каловые массы к месту их выведения из организма. Также эта роль проявляется при родах, когда гладкие мышцы матки выталкивают плод из органа.

Функции гладкой мышечной ткани этим не ограничиваются. Также немаловажна их сфинктерная роль. Из ткани данного вида формируются специальные круговые мышцы, которые могут смыкаться и размыкаться. Сфинктеры присутствуют в мочевых путях, в кишечнике, между желудком и пищеводом, в желчном пузыре, в зрачке.

Еще одна важная роль, которую играют гладкие мышцы, — формирование связочного аппарата. Он необходим для поддержания правильного положения внутренних органов. При понижении тонуса этих мышц может происходить опущение некоторых органов.

На этом функции гладкой мышечной ткани заканчиваются.

Здесь, в принципе, особо говорить не о чем. Основная и единственная функция этой ткани — обеспечение циркуляции крови в организме.

Для раскрытия этого вопроса представляем таблицу:

Гладкая мускулатура Поперечно-полосатые мышцы Сердечная мышечная ткань
Сокращается автоматически Может контролироваться сознательно Сокращается автоматически
Клетки удлинненные, веретеноподобные Клетки длинные, нитевидные Удлинненные клетки
Волокна не объединяются в пучки Волокна объединяются в пучки Волокна объединяются в пучки
Одно ядро в клетке Несколько ядер в клетке Несколько ядер в клетке
Сравнительно небольшое количество митохондрий Большое количество митохондрий
Отсутствуют миофибриллы Присутствуют миофибриллы Есть миофибриллы
Клетки способны делиться Волокна не могут делиться Клетки не могут делиться
Сокращаются медленно, слабо, ритмично Сокращаются быстро, сильно Сокращаются быстро, сильно, ритмично
Выстилают внутренние органы (кишечник, матка, мочевой пузырь), формируют сфинктеры Крепятся к скелету Формируют сердце

Вот и все основные характеристики поперечно-полосатой, гладкой и сердечной мышечных тканей. Теперь вы ознакомлены с их функциями, строением и главными различиями и сходствами.

источник

Мышечные ткани — это ткани, отличающиеся по структуре и происхождению, но имеют общую способность к сокращению. Состоят из миоцитов — клеток, которые могут воспринимать нервные импульсы и отвечать на них сокращением.

Морфологические признаки:

  • Вытянутая форма миоцитов;
  • продольно размещены миофибриллы и миофиламенты;
  • митохондрии находятся вблизи сократительных элементов;
  • присутствуют полисахариды, липиды и миоглобин.

Свойства мышечной ткани:

  • Сократимость;
  • возбудимость;
  • проводимость;
  • растяжимость;
  • эластичность.

Выделяют следующие виды мышечной ткани в зависимости от морфофункциональных особенностей:

  1. Поперечнополосатая: скелетная, сердечная.
  2. Гладкая.

Гистогенетическая классификация делит мышечные ткани на пять видов в зависимости от эмбрионального источника:

  • Мезенхимные — десмальный зачаток;
  • эпидермальные — кожная эктодерма;
  • нейральные — нервная пластинка;
  • целомические — спланхнотомы;
  • соматические — миотом.

Из 1-3 видов развиваются гладкомышечные ткани, 4, 5 дают поперечнополосатые мышцы.

Cостоит из отдельных мелких веретеновидных клеток. Эти клетки имеют одно ядро и тонкие миофибриллы, которые тянутся от одного конца клетки к другому. Гладкие мышечные клетки объединяются в пучки, состоящие из 10-12 клеток. Это объединение возникает благодаря особенностям иннервации гладкой мускулатуры и облегчает прохождение нервного импульса на всю группу гладких мышечных клеток. Сокращается гладкая мышечная ткань ритмично, медленно и на протяжении длительного времени, способна при этом развивать большую силу без значительных затрат энергии и без утомления.

У низших многоклеточных животных из гладкой мышечной ткани состоят все мышцы, тогда как у позвоночных животных она входит в состав внутренних органов (кроме сердца).

Сокращения этих мышц не зависят от воли человека, т. е. происходят непроизвольно.

Функции гладкой мышечной ткани:

  • Поддерживание стабильного давления в полых органах;
  • регуляция уровня кровяного давления;
  • перистальтика пищеварительного тракта, перемещения по нему содержимого;
  • опорожнение мочевого пузыря.

Cостоит из длинных и толстых волокон длиной 10-12 см. Скелетная мускулатура характеризуется произвольным сокращением (в ответ на импульсы, идущие из коры головного мозга). Скорость ее сокращения в 10-25 раз выше, чем в гладкой мышечной ткани.

Мышечное волокно поперечнополосатой ткани покрыто оболочкой — сарколеммой. Под оболочкой находится цитоплазма с большим количеством ядер, расположенных по периферии цитоплазмы, и сократительными нитями — миофибриллами. Состоит миофибрилла из последовательно чередующихся темных и светлых участков (дисков), обладающих разным коэффициентом преломления света. С помощью электронного микроскопа установлено, что миофибрилла состоит из протофибрилл. Тонкие протофибриллы построены из белка — актина, аболее толстые — из миозина.

При сокращении волокон происходит возбуждение сократимых белков, тонкие протофибриллы скользят по толстым. Актин реагирует с миозином, и возникает единая актомиозиновая система.

Функции скелетной мышечной ткани:

  • Динамическая — перемещение в пространстве;
  • статическая — поддержание определенной позиции частей тела;
  • рецепторная — проприорецепторы, воспринимающие раздражение;
  • депонирующая — жидкость, минералы, кислород, питательные вещества;
  • терморегуляция — расслабление мышц при повышении температуры для расширения сосудов;
  • мимика — для передачи эмоций.

Миокард построен из сердечной мышечной и соединительной ткани, с сосудами и нервами. Мышечная ткань относится к поперечнополосатой мускулатуре, исчерченность которой также обусловлена наличием разных типов миофиламентов. Миокард состоит из волокон, которые связаны между собой и формируют сетку. Эти волокна включают одно или двухъядерные клетки, что расположены в виде цепочки. Они получили название сократительных кардиомиоцитов.

Сократительные кардиомиоциты длиной от 50 до 120 микрометров, шириной — до 20 мкм. Ядро здесь располагается в центре цитоплазмы, в отличие от ядер поперечно полосатых волокон. Кардиомиоциты имеют больше саркоплазма и меньше миофибрилл, в сравнении со скелетными мышцами. В клетках сердечной мышцы находится много митохондрий, так как непрерывные сердечные сокращения требуют много энергии.

Вторая разновидность клеток миокарда — это проводящие кардиомиоциты, которые формируют проводящую систему сердца. Проводящие миоциты обеспечивают передачу импульса к сократительным мышечным клеткам.

Функции сердечной мышечной ткани:

  • Насосная;
  • обеспечивает ток крови в кровеносном русле.

Особенности строения мышечной ткани обусловлены выполняемыми функциями, возможностью принимать и проводить импульсы, способностью к сокращению. Механизм сокращения заключается в согласованной работе ряда элементов: миофибрилл, сократительных белков, митохондрий, миоглобина.

В цитоплазме мышечных клеток имеются особые сократительные нити — миофибриллы, сокращение которых возможно при содружественной работе белков — актина и миозина, а также при участии ионов Са. Митохондрии снабжают все процессы энергией. Также энергетические запасы образуют гликоген и липиды. Миоглобин необходим для связывания O2 и формирование его запаса на период сокращения мышцы, так как во время сокращения идет сдавление кровеносных сосудов и снабжение мышц O2 резко снижается.

Читайте также:  Зажим мышцы на спине и шеи

Таблица. Соответствие между характеристикой мышечной ткани и ее видом

Вид ткани Характеристика
Гладкомышечная Входит в состав стенок кровеносных сосудов
Структурная единица – гладкий миоцит
Сокращается медленно, неосознанно
Поперечная исчерченность отсутствует
Скелетная Структурная единица – многоядерное мышечное волокно
Свойственна поперечная исчерченность
Сокращается быстро, осознанно

Гладкие мышцы являются составной частью стенок внутренних органов: желудочно-кишечного тракта, мочеполовой системы, сосудов. Входят в состав капсулы селезенки, кожных покровов, сфинктера зрачка.

Скелетная мускулатуразанимают около 40% от массы тела человека, с помощью сухожилий крепятся к костям. Из этой ткани состоят скелетные мышцы, мышцы рта, языка, глотки, гортани, верхнего участка пищевода, диафрагмы, мимическая мускулатура. Также поперечно полосатые мышцы находится в миокарде.

Волокна поперечнополосатых мышц намного длиннее (до 12см), чем клеточные элементы гладкомышечной ткани (0,05-0,4мм). Также скелетные волокна имеют поперечную исчерченность благодаря особому расположению нитей актина и миозина. Для гладких мышц это не характерно.

В мышечных волокнах находится много ядер, а сокращение волокон сильное, быстрое и осознанное. В отличие от гладких мышц, клетки гладкомышечной ткани одноядерные, способны сокращаться в медленном темпе и неосознанно.

источник

В данной статье описаны основные характеристики гладкой мускулатуры. Рассматриваются следующие темы.

  • Гладкие мышцы состоят из одиночных веретеновидных клеток.
  • Как правило, гладкие мышцы выполняют непроизвольные сокращения.
  • Гладкие мышцы являются важной составной частью стенок мышечных полых органов.
  • В отличие от поперечно-полосатых мышц миофиламенты гладких мышц не имеют четкой организации и не имеют саркомеры.
  • Гладкие мышцы можно тренировать с помощью специальных упражнений, чтобы повысить их эффективность и коэффициент полезного действия.
  • Первичными контролирующими элементами гладкой мускулатуры в головном мозге являются нервные волокна вегетативной нервной системы.
  • Гладкие мышцы являются основной составной частью стенок кровеносных и лимфатических сосудов.
  • Тонус кровеносных сосудов определяет скорость и величину кровотока.

В отличие от скелетных мышц, которые состоят из многоядерных элементов, образованных в результате слияния многих клеток, гладкая мышечная ткань образована отдельными клетками. Форма клеток приближается к веретеновидной (фузиформной), однако в отдельных случаях они могут иметь и другую форму (рис. 1.15). Клетки окружены базальной мембраной, содержащей большое количество белков, и имеют одно ядро в центре. В расслабленном состоянии клетки ядро продолговатое, а при сокращении принимает штопорообразную форму. При классическом окрашивании цитоплазма гладкомышечных клеток в световом микроскопе выглядит гомогенной. В гладкомышечной клетке отсутствуют саркомеры, поэтому ни в продольном, ни в поперечном срезе не видны миофибриллы (рис. 1.16). [[Image:|250px|thumb|right|рис. 1.16. Гистологическое строение гладких мышц — гладкомышечные веретенообразные клетки с одиночным расположенным в центре ядром; миофибриллы не видны]] Необходимые для сокращения актиновые и миозиновые филаменты прикрепляются либо к клеточной мембране (якорные бляшки), либо к так называемым плотным тельцам в цитоплазме.

Ядро гладкомышечной клетки содержит хорошо выраженное ядрышко. Большинство клеточных органелл расположено около полюсов ядра. В отличие от скелетных мышц в гладкомышечных клетках слабо выражен саркоплазматический ретикулум, поэтому их сократимость значительно отличается (Welsch, 2006).

Гладкомышечные клетки помимо других свойств характеризуются непроизвольными сокращениями. Гладкие мышцы способны непроизвольно сокращаться, поэтому они не нуждаются в произвольном контроле. Соответственно этому, они расположены преимущественно в следующих органах человеческого организма.

  • Гладкие мышцы являются важной составной частью стенок мышечных полых органов. К ним относится большинство органов пищеварительной и мочевыделительной систем, а также дыхательные пути.
  • Пищеварительная система состоит из головной (полость рта и глотка) и туловищной частей пищеварительной трубки (пищевод, желудок и кишечник), а также связанных с ними экзокринных желез (слюнные железы, поджелудочная железа и печень).
  • Железы содержат гладкие мышцы преимущественно в стенках их выводных протоков. Особенностью выводного протока печени является наличие разветвлений и расширения для депонирования секрета, которое называется желчным пузырем.
  • Туловищная часть пищеварительного тракта (канала) имеет три слоя гладких мышц, ответственных за перистальтику и движение ворсинок слизистой оболочки кишки. В некоторых областях особенно выражена кольцевая мускулатура, которая образует сфинктеры или привратники и внутренний анальный сфинктер.
  • В отличие от туловищной части головной конец пищеварительного тракта содержит поперечно-полосатые мышцы вместо гладких.
  • Как и стенки пищеварительного тракта, стенки мочевыводящих путей также имеют три слоя гладкой мускулатуры, которые при более близком рассмотрении образуют единый спиралевидный слой.
  • Как мужские, так и женские половые органы имеют большое количество гладких мышц.
  • Гладкие мышцы в большом количестве содержатся в трахее и бронхах — важных частях нижних дыхательных путей. Гладкомышечные клетки регулируют объем поступающего воздуха в зависимости от внешних факторов за счет изменения диаметра дыхательных путей.

Гладкие мышцы являются составной частью кровеносных и лимфатических сосудов. Количество гладкомышечной ткани пропорционально диаметру сосуда, причем при одинаковых размерах артерии содержат больше гладкой мускулатуры, чем вены и лимфатические сосуды. По мере разветвления сосудов уменьшается и абсолютное количество гладких мышц, при этом в артериолах относительно их диаметра содержание гладкой мышечной ткани максимально. В капиллярах гладкомышечная ткань отсутствует.

Гладкомышечная ткань также встречается в некоторых немышечных органах.

  • В глазном яблоке гладкие мышцы ответственны за расширение и сужение зрачка, а также натяжение капсулы хрусталика. Это позволяет изменять его преломляющую силу и количество света, падающего на сетчатку. Этот механизм важен для ближнего и дальнего зрения и восприятия глубины.
  • Поднимание волос как реакция на холод или страх выполняется мышцами, поднимающими волос (шш. arrectores pilorum). При их сокращении кожа приобретает вид «гусиной кожи» («мурашки»). Также в организме (например, в экзокринных железах или яичнике при овуляции) встречаются клетки, представляющие собой нечто среднее между мышечными и соединительнотканными клетками (так называемые миофибробласты) или клетками эпителия (миоэпителиоциты) (Drenckhahn, 2003).

Запомните:Необходимо упомянуть, что некоторые мышцы, выполняющие более или менее непроизвольные сокращения, являются поперечно-полосатыми. К ним относятся следующие мышцы.

  • Диафрагма — главная дыхательная мышца.
  • Сердечная мышца.
  • Мышцы дна ротовой полости, нёба и глотки.
  • Мышцы гортани.
  • Мимические мышцы.
  • Мышцы тазового дна и наружные сфинктеры (анальный и сфинктер уретры).

Как и у поперечно-полосатых мышц, сокращение гладких мышц происходит за счет взаимного скольжения миофиламентов — тонких актиновых и толстых миозиновых филаментов (миозин II типа). Гладкомышечные клетки содержат в 3 раза меньше миозина, чем поперечно-полосатые. В отличие от скелетных мышц миозиновые филаменты в гладкомышечных клетках расположены неупорядоченно и не образуют саркомеры и миофибриллы, что и послужило причиной появления термина «гладкие мышцы». Тонкие актиновые филаменты, как уже было указано, прикрепляются к плотным тельцам в цитоплазме или к якорным бляшкам клеточной мембраны. Эти образования являются аналогами Z-линии в поперечно-полосатых мышцах. Помимо хаотичного расположения миофиламентов сократительный аппарат гладких мышц отличается от поперечно-полосатых как ультраструктурно, так и биохимически. Одним из важных структурных различий является активность Са2+-каналов

и фермента АТФазы миозина, которая влияет на скорость мышечных сокращений. Плохо развитый саркоплазматический ретикулум позволяет депонировать лишь небольшое количество ионов Са2+, а большая часть ионов, необходимых для мышечного сокращения, поступает при возбуждении клетки из межклеточного пространства. По этой причине в гладкомышечной ткани наблюдается, с одной стороны, медленный ток ионов Са2+, а с другой — меньшая активность АТФазы миозина (в 10-100 раз ниже, чем в поперечно-полосатых мышцах). Таким образом, сокращения гладких мышц характеризуются низкой скоростью, но большей длительностью (Widmaier et al., 2008).

Характер, процесс и контроль мышечных сокращений в гладких мышцах значительно отличается от таковых в поперечно-полосатых мышцах. Последние способны к быстрым сокращениям и быстро утомляются, в то время как гладкие мышцы характеризуются относительно медленными сокращениями, но обладают большей выносливостью. Причиной этого является особая ультраструктура гладкомышечных клеток, а также молекулярная структура миофиламентов. Кроме этого, деполяризация клеточной мембраны (и, следовательно, поступление ионов Са2+ и возникающее сокращение) гладкомышечных клеток вызывается множеством факторов, в то время как деполяризация мембраны скелетных мышц регулируется нейромедиатором ацетилхолином (АЦХ), выделяемым двигательными нейронами.

Именно последняя особенность считается причиной непроизвольности сокращений гладких мышц. Иногда утверждают, что гладкие мышцы вообще не способны к произвольным сокращениям, однако это не всегда так. Более правильно утверждать, что гладкие мышцы не нуждаются в произвольном контроле, т. к. центры в стволе головного мозга, ответственные за кровообращение, функцию пищеварительного тракта и т. д., функционируют без сознательного контроля. Это также справедливо для нервных центров, регулирующих функцию сердца и дыхания, хотя сердечная мышца и дыхательные мышцы (особенно диафрагма) являются поперечно-полосатыми.

Необходимо отметить, что контроль скелетных мышц только частично произволен. Единственные мышцы, которые поодиночке выполняют истинные произвольные движения (причем некоторые только при тренировке), — мышцы кисти. Все остальные движения возникают в результате сложных неосознанных взаимодействий многих мышц (мышц-синергистов), т. к. при этом всегда изменяются статические силы тела. Для простого сгибания руки в локте требуется напряжение сгибателей кисти, лучезапястного сустава и локтевого сустава. При этом должны также одновременно расслабиться мышцы-антагонисты (все разгибатели соответствующих суставов, например трехглавая мышца плеча). Дополнительно активируются различные мышцы плечевого пояса, которые стабилизируют лопатку относительно туловища, а также различные мышцы, стабилизирующие туловище, тазобедренный сустав и нижние конечности, чтобы поддерживать статику (позу) тела. Из этого примера видно, что произвольное напряжение одной мышцы, не говоря уже об отдельных мышечных волокнах, невозможно, как и произвольное напряжение отдельных гладких мышц. Возможна лишь активация мышечной системы, а именно совокупности синергистов для выполнения одного движения (например, сгибания локтевого сустава).

Учитывая вышесказанное, читателя не должно удивить, что произвольная активация системы гладких мышц все же возможна. К примеру, с помощью методов биологической обратной связи или расслабления в результате тренировок возможно относительно легко получить контроль над активностью мышц сердечно-сосудистой системы. Эти методы часто применяются в лечении мигреней и артериальной гипертензии.

Кроме этого, было продемонстрировано, что различный уровень тренированности влияет не только на внутри- и межмышечную координацию скелетных мышц, но и на активность гладких мышц сердечнососудистой системы (артериальное давление) или желез внешней секреции (выделение пота), которая может значительно изменяться под влиянием спортивных тренировок.

В заключение необходимо отметить, что гладкие мышцы до определенного предела все же подчиняются произвольному контролю. Из этого следует очевидный вывод, который давно известен в спорте: гладкие мышцы можно тренировать с помощью специальных методик и повышать их работоспособность и эффективность. Простые тренировки на выносливость через несколько недель позволяют значительно повысить эффективность работы, например, сердечно-сосудистой системы. Схожие результаты известны и для потовых желез: после упражнений на выносливость тренированные люди начинают потеть раньше, чем нетренированные.

Отличия физиологических функций гладких мышц определяют их биохимические и анатомические особенности. Наиболее важными являются следующие особенности (Widmaier et al., 2008).

  • Скорость сокращений — сокращение гладкомышечных клеток, подобно остальных типам мышечной ткани, основано на повышении концентрации ионов Са2+ в цитоплазме. В отличие от поперечно-полосатых мышц в них слабо развит саркоплазматический ретикулум, поэтому они становятся зависимы от поступления ионов в клетку. Входящий ток ионов значительно медленнее, чем процесс высвобождения Са2+ из саркоплазматического ретикулума, кроме того, активность ферментов миозина в гладкомышечных клетках в 10-100 раз ниже, чем в поперечно-полосатых. Эти два фактора обусловливают относительно низкую скорость сокращений гладких мышц.
  • Выносливость — расслабление гладкой мускулатуры происходит после разрыва поперечных связей между актиновыми и миозиновыми филаментами. Для этого необходимо дефосфорилирование головки миозина, т. к. он способен связываться с актином только в фосфорилированном состоянии. При возбуждении гладкомышечной клетки постоянно происходят процессы фосфорилирования и дефосфорилирования миозиновых головок, причем скорость фосфорилирования выше, чем скорость дефосфорилирования. При длительном повышении концентрации Са2+ активируются процессы дефосфорилирования головок миозина, уже связанных с актином. Таким образом, гладкомышечные клетки могут в течение многих часов без выраженного утомления и потребления большого количества энергии поддерживать статическое сокращение. Это можно сравнить с трупным окоченением скелетных мышц, однако это происходит в живом организме и типично для гладкомышечных сфинктеров (например, выходной сфинктер мочевого пузыря).
  • Физиологическая недостаточность — благодаря своей ультраструктуре гладкие мышцы могут совершать сильные изометрические и концентрические сокращения в большем диапазоне длины, чем скелетные мышцы. В качестве примера можно привести сильное растяжение мочевого пузыря или матки в конце беременности (в этих случаях мышцы могут растягиваться в 8 раз).

В отличие от скелетных мышц гладкие и сердечные мышцы способны к спонтанной деполяризации и сокращению, независимому от нервных стимулов. В сердце процессы спонтанной деполяризации являются одной из функций органа, имеют систему внешнего контроля и выполняются в здоровом сердце только группой специфических мышечных клеток (клетки синусного и атриовентрикулярного узлов). В гладких мышцах существует множество факторов, которые могут вызывать эти процессы и на них влиять.

Первичным органом контроля гладких мышц являются центры вегетативной нервной системы (ВНС, автономная нервная система). Филогенетически это очень старая часть нервной системы, расположенная преимущественно в стволе головного мозга и контролируемая гипоталамусом. ВНС участвует в поддержании важных параметров гомеостаза и адаптации к изменяющимся условиям среды, например к физической нагрузке: повышение тонуса сосудов, расширение дыхательных путей, уменьшение перистальтики кишечника и т. д. без участия непосредственного контроля со стороны коры больших полушарий. Существует три типа ВНС.

  • Внутрикишечная, или энтерическая, вегетативная нервная система (ЭНС — энтеральная, или интрамуральная, нервная система) — скопление нервных клеток в стенке кишечника. Как и некоторые гладкомышечные или сердечные клетки, они обладают способностью к спонтанному генерированию потенциалов действия и вызывают ритмическое волнообразное сокращение мышц кишечника (перистальтику). Предположительно, ЭНС — единственная часть нервной системы, обладающая истинной автономностью и не требующая контроля головного мозга, чья активность модулируется только другими центрами ВНС. Перистальтика кишечника продолжается даже после удаления его из организма до полного исчерпания запаса электролитов, кислорода и питательных веществ.
  • Симпатическая нервная система — общей функцией данной системы является повышение активности внутренних органов, необходимых при стрессовых ситуациях (борьба, бегство, сексуальная активность и спорт). Симпатическая нервная система повышает активность сердца, тонус кровеносных сосудов и артериальное давление, расширяет верхние дыхательные пути и, следовательно, увеличивает поступление кислорода, расширяет зрачки, усиливает потоотделение и т. д. Одновременно с этим она уменьшает активность кишечника, продукцию мочи и органов выделения. Веществами, через которые симпатическая нервная система оказывает влияние на гладкие мышцы, в первую очередь считаются нейромедиаторы адреналин и норадреналин (приблизительно в соотношении 80:20).
  • Парасимпатическая нервная система — рассматривается как антагонист симпатической нервной системы, т. к. она оказывает противоположное действие. В остальном же взаимодействие между двумя типами рассматривается как синергическое, т. к. задачей парасимпатической нервной системы является накопление энергии, требуемой симпатической системе. Парасимпатическое влияние на внутренние органы преобладает в состоянии покоя и реактивной фазе сна. Синергическое действие обеих систем также видно на примере процесса полового акта, т. к. эрекция — процесс, контролируемый парасимпатической системой, а эякуляция — симпатической. Нейромедиатором парасимпатической системы является ацетилхолин (АЦХ).
Читайте также:  Качаем мышцы в контакте

Помимо вышеперечисленных нейромедиаторов на сократимость гладких мышц влияет множество веществ, например моноокись азота и серотонин или яды растительного происхождения мускарин (мухоморы), атропин (красавка/белладонна), никотин (табачные растения) и кураре (южноамериканская лилия).

Потенциалы действия в гладких мышцах также возникают при их растяжении. При этом открываются чувствительные к растяжению Са2+-каналы в клеточной мембране и ионы Са2+ устремляются в клетку. Данный механизм не только чрезвычайно важен для поддержания гомеостаза, но и является причиной возникновения колик. При этом гладкие мышцы полых органов (мочеточников, желчевыводящих путей, кишечника и т.д.) растягиваются конкрементом, что приводит к их рефлекторному сокращению. Присутствие конкремента нарушает моторику этих органов, сокращение мышц не позволяет продвинуть конкремент, что вызывает новые сокращения (периодические спазмы) (Widmaier et al., 2008).

Гладкая мышца состоит из многих слоев веретеновидных клеток. Гладкие мышцы работают во многих органах (желудок, кишечник, желчный пузырь, мочевой пузырь, матка, бронхи, глаз и т. д.), а также в кровеносных сосудах, где играют важную роль в регуляции кровообращения. Гладкие мышцы содержат специальный тип F-актин-тропомиозин- и миозин II-филаментов, но мало тропонина и миофибрилл. Кроме того, гладкие мышцы не имеют развитой системы микротрубочек и саркомеров (они не исчерчены). Отсюда и название — гладкая мускулатура. Гладкомышечные филаменты формируют слабый сократительный аппарат, расположенный в клетке продольно и прикрепленный к дисковидным бляшкам (модель см. Б), которые также обеспечивают механическую связь между клетками в гладкой мускулатуре. Гладкая мышца может укорачиваться гораздо сильнее, чем поперечно-полосатая мышца.

Мембранный потенциал гладкомышечных клеток многих органов (например, кишечника) не постоянный, а ритмично изменяется с низкой частотой (от 3 до 15 мин-1) и амплитудой (от 10 до 20 мВ), таким образом образуя медленные волны. Эти волны вызывают вспышки потенциала действия (пики), если превосходят некоторый потенциал покоя. Чем дольше медленная волна остается выше потенциала покоя, тем больше количество и частота потенциалов действия, которые она производит. Сравнительно вялое сокращение происходит примерно через 150 мс после пика. Тетанус наступает при довольно низкой частоте пиков. Следовательно, гладкая мускулатура постоянно находится в состоянии более или менее сильного сокращения (тонуса). Потенциал действия гладкомышечных клеток некоторых органов имеет плато, аналогичное таковому у сердечного потенциала действия.

Существуют два типа гладкой мускулатуры (А). Клетки однородной гладкомышечной ткани электрически сопряжены друг с другом щелевыми контактами. В таких органах, как желудок, кишечник, желчный пузырь, мочевой пузырь, мочеточники, матка и в некоторых типах кровеносных сосудов, т. е. там, где присутствует этот тип гладкомышечной ткани, стимулы передаются от клетки к клетке. Стимулы генерируются автономно изнутри гладкой мускулатуры (частично клетками-водителями ритма). Другими словами, стимул не зависит от иннервации и во многих случаях является спонтанным (миогенный тонус). Второй тип, неоднородная гладкомышечная ткань, характеризуется тем, что межклеточные взаимодействия там осуществляются в основном при помощи стимулов, передаваемых вегетативной нервной системой (нейрогенный тонус). Это происходит в таких структурах, как артериолы, семенные канальцы, радужная оболочка глаза, ресничное тело, мышцы у корней волос. Поскольку между этими гладкомышечными клетками обычно нет щелевых контактов, стимуляция остается локальной, как в двигательных единицах скелетной мышцы.

Тонус гладкой мускулатуры регулируется степенью деполяризации (например, посредством растяжения или клеток — водителей ритма), а также с помощью медиаторов (например, ацетилхолина или норадреналина) и многочисленных гормонов (например, в матке — эстрогена, прогестерона и окситоцина, в стенках сосудов — гистамина, ангиотензина II, вазопрессина, серотонина и брадикинина). Увеличение тонуса происходит, если любой из этих факторов прямо или опосредованно увеличивает внутриклеточную концентрацию Са 2+ до более 10-6 моль/л. Приток Са 2+ происходит в основном из межклеточного пространства, но небольшие количества поступают и из внутриклеточных запасов (Б1). Ионы Са 2+ связываются кальмодулином (КМ) (Б2), и комплекс Са 2+ -КМ способствует сокращению. Как же это происходит?

Регуляция на уровне миозина II (БЗ): комплекс Са 2+ -КМ активирует киназу легких цепей миозина (КЛЦМ), которая фосфорилирует регуляторную легкую цепь миозина (РЛЦМ) по заданному положению, благодаря чему миозиновая головка может взаимодействовать с актином (Б6).

Регуляция на уровне актина (Б4): комплекс Са 2+ -КМ также связывает кальдесмон (КДМ), который затем отщепляется от комплекса актин-тропомиозин, делая его доступным для скольжения филаментов (Б6). Фосфорилирование КДМ протеинкиназой С (ПК-С) также, по-видимому, способно индуцировать скольжение филаментов (В5).

Следующие факторы ведут к снижению тонуса: снижение концентрации Са 2+ в цитоплазме ниже 10-6 моль/л (Б7), фосфатазная активность (Б8), а также активность протеинкиназы С, когда она фосфорилирует другое положение легкой цепи миозина (Б9).

При регистрации зависимости «длина-сила» для гладкой мышцы выявляется постоянное снижение мышечной силы, в то время как длина мышцы остается постоянной. Это свойство мышцы называется пластичностью.

источник

Движение. Как много и как мало в данном слове. Для человека такое естественное свойство его опорно-двигательного аппарата открывает тысячи возможностей, и каждый наш день наполнен движением. И человек вовсе не заключен в своем теле, как в душной камере, напротив, люди вольны использовать ресурсы, данные им природой во всю мощь. Мышцы – удивительная ткань, возможности которой в условиях меняющихся нагрузок поражают воображение, а функциональные возможности скелетно-мышечной системы восхищают изящностью исполнения. А потому интересно было бы взглянуть на то, как же обеспечивается мышечная работа в целом.

В мышечной ткани происходит преобразование химической энергии в механическую работу. В качестве источника энергии химических связей используется АТФ, получаемая мышечными клетками в результате метаболических процессов.

Миоциты разных типов мышечной ткани обладают различным набором ферментов, а также отличаются по количеству митохондрий и миоглобина – белка, осуществляющего перенос кислорода. Мышечные волокна, выполняющие взрывную работу за короткое время покрывают необходимые энергетические затраты посредством анаэробного гликолиза, ферменты для осуществления которого присутствуют в клетках в норме в надлежащем количестве. За счет сравнительно низкого содержания миоглобина в клетках таких мышечных волокон, под микроскопом они выглядят светлыми и потому называются белыми волокнами. Им в противоположность существуют красные мышечные волокна, которые обеспечивают совершение продолжительной работы мышцами, и характеризуются более высоким содержанием миоглобина. Клетки красных мышечных волокон, которые, кроме прочего, составляют и сердечную мускулатуру, нуждаются в кислороде и потому имеют много митохондрий, а также богаты ферментами цикла Кребса и дыхательной цепи.

Глюконеогенез в мышечной ткани не протекает из-за отсутствия в ней нужных для его свершения ферментов. Продукты обмена веществ в мышечной ткани (лактат, возникающий при анаэробном гликолизе из пирувата, и аланин, являющийся продуктом трансаминирования из пирувата и аминокислот), пройдя циклы Кори и аланина, транспортируются по кровеносному руслу в печень для глюконеогенеза: в результате реакции повторного трансаминирования в печени возрастает количество необходимого пирувата. Гликоген печени при необходимости может стать источником глюкозы для мышечной ткани, что замыкает данный цикл. Синтез и разрушение гликогена в мышцах подчиняется гормональному контролю: инсулин способствует захвату глюкозы клетками и синтезу гликогена, тогда как катехоламины путем повышения уровня цАМФ стимулируют активность гликогенфосфорилазы. Катаболическое воздействие глюкокортикоидов ведет к разрушению мышечных белков и мобилизации аминокислот, которые в печени задействуются в глюконеогенезе.

Гидролитическое отщепление фосфатных групп от молекул АТФ дает мышечным клеткам необходимую для сокращения энергию. Еще одним макроэргическим фосфатом, используемым в мышцах, является креатинфосфат, отщепленная от которого креатинкиназой фосфатная группа переносится на АДФ. Неферментативно образующимся побочным продуктом превращения креатинфосфата является креатинин, который регулярно обнаруживается в крови и выводится через почки (суточное выводимое с мочой количество креатинина пропорционально мышечной массе). Таким образом, креатинфосфат представляет собой своего рода энергетический резерв, обеспечивая скорое восстановление количества молекул АТФ. У такой системы восстановления АТФ есть важное преимущество перед накоплением АТФ, заключающееся в том, что после превращения АТФ в АДФ вследствие разрыва фосфодиэфирной связи не создается невыгодного соотношения АТФ/АДФ, что могло бы негативно сказываться на функции АТФ из-за концентрационной зависимости от энергии Гиббса. Есть и еще одна система, служащая восстановлению АТФ в мышечной ткани, ключевым ее ферментом является аденилаткиназа (миокиназа), способная образовывать АТФ за счет АДФ, а также фосфорилировать АМФ до АДФ.

Строение мышечных волокон

Клетки поперечно-полосатой мускулатуры отличаются от клеток гладкой мышечной ткани и ткани сердечной мышцы. Они образуют единый многоядерный синцитий. Клеточные ядра при этом смещены к краю клеток, а основное внутриклеточное пространство занято миофибриллами. Миофибриллы окружены саркоплазматическим ретикулумом, что достигается посредством формирования продольных и поперечных трубочек, а также лабиринтообразных впячиваний плазматической мембраны, благодаря чему возбуждение достигает этих участков. Плазматическая мембрана миоцитов – сарколемма – укреплена с внутренней стороны белками цитоскелета. В связывании с интегральными мембранными белками задействован белок дистрофин, мутации в гене которого приводят к развитию миодистрофии.

Скелетные мышцы структурно строго организованы в мышечные пучки, волокна, фибриллы и филаменты. Фибриллы поперечно-полосатых мышц состоят, прежде всего, из толстых миозиновых филаментов и тонких филаментов. Первый тип состоит из миозина и молекулярные моторные единицы. Второй тип филаментов включает F-актин и актин-связывающие белки – тропомиозин и тропонин. Головки тяжелых цепей миозина выдаются кнаружи и способны формировать связи с тонкими актиновыми филаментами. Актиновые филаменты, в свою очередь, закреплены на структурных белках, образующих так называемые Z-диски. Типичная поперечная исчерченность данного типа мышечной ткани, узнаваемая гистологически, создается благодаря устройству и расположению саркомера – функциональной единицы мышцы — который представляет собой участок миофибриллы между двумя Z-мембранами. Актиновые филаменты связываются как между собой, так и с Z-белками. Два других белка – титин и небулин – принимают участие в структурировании миофибрилл в процессе сокращения и расслабления. Титин прикрепляется к белкам Z-структуры и к М-линиям, сформированным миозином и структурными белками. Небулин закреплен в Z-структурах и исполняет регуляторную роль в построении тонких филаментов.

Несмотря на строгую организацию, скелетная мускулатура являет собой крайне гетерогенную систему относительно устройства и выполняемых функций. С одной стороны, это позволяет подстроиться мышцам под возлагаемую на них нагрузку путем разборки / увеличения количества саркомеров или миофибрилл, с другой стороны – обмен различными изоформами белков разных свойств и качеств обуславливает функциональную реорганизацию.

Схематичное строение саркомера.

Фиолетовым изображен миозин, головки его тяжелых цепей обращены к нитям актина и соединяются с ними. Движение головок миозина при сокращении ведет к подтягиванию актиновых филаментов к центру. Также обозначено прикрепление актиновых нитей к Z-дискам.

Сокращение мышц находится в зависимости от концентрации ионов кальция. Передача возбуждения на нейромышечные окончания поперечно-полосатых волокон ведет к деполяризации наружной мембраны и открытию кальциевых каналов в мембране саркоплазматического ретикулума, простирающегося через все саркомеры. Концентрация ионов кальция в цитозоле резко возрастает и они связываются с тропонином С. Это приводит к конформационным изменениям субъединиц тропонинового комплекса, что имеет следствием смещение позиции тропомиозина. Это событие делает возможным связывание участков цепей миозина с актином. Головки миозина расщепляют АТФ до АДФ и остатка фосфорной кислоты, а высвобождающаяся при этом энергия обеспечивает смену ее конформации. Свершившееся связывание ионов кальция с тропонином С является необходимым для взаимодействия миозина с актиновыми волокнами, которое влияет на изменение угла между легкой и тяжелой цепями миозина. Такой сдвиг оканчивается перемещением актинового филамента к центру саркомера. Скольжение тонких филаментов относительно толстых приводит к укорочению саркомеров и сокращению мышцы. После этого происходит экзергоническая смена конформации головки миозина, а продукты гидролиза АТФ выносятся из клетки. Для повторения цикла необходимо очередное внесение АТФ в систему. Если мотонейроны перестают получать раздражение извне, то в работу вступает АТФ-зависимый кальциевый насос, перекачивающий более не востребованные ионы кальция из цитоплазмы в цистерны саркоплазматического ретикулума, где они связываются с кальсеквестрином, обладающим высокой связывающей способностью. В связи с этим концентрация свободных ионов кальция снижается, что энергетически облегчает последующее поглощение этих ионов.

Схема мышечного сокращения.

Молекулярные компоненты системы, осуществляющей впоследствии высвобождение кальция из саркоплазматического ретикулума , известны только частично. Начало сигнальной цепочки опосредуют дигидропиридиновые рецепторы плазматической мембраны, которые сменяют свою конформацию под влиянием деполяризации мембраны. Это приводит к открытию кальциевых каналов и активации рианодиновых рецепторов терминальных цистерн саркоплазматического ретикулума. Преходящее повышение концентрации ионов кальция в цитоплазме мышечных клеток ведет и к метаболическим изменениям. Например, дефосфорилированная форма киназы гликогенфосфорилазы может активироваться комплексом кальмодулина с ионами кальция, а потому мышечное возбуждение связано с кратковременным разрушением гликогена.

На этом наше повествование не оканчивается. В последующих постах обязательно подробнее рассмотрим биохимические превращения в мышцах, а также обратимся к особенностям, происходящим с мышцами при физических нагрузках.

Löffler, Petrides Biochemie und Pathobiochemie, Springer, 2007

Волков, Несен Биохимия мышечной деятельности, 2000

источник