Меню Рубрики

Строение и принцип работы мышц

Различают два вида мышц: поперечнополосатые и гладкие. Особым строением обладает сердечная мышца. Карта мышц тела человека

Гладкие мышцы располагаются в стенках внутренних органов, например кишок. Поперечнополосатые мышцы называют также скелетными мышцами, так как они соединяют друг с другом отдельные части скелета. Именно этим мышцам мы уделим большее внимание. Мышцы представляют собой активную часть двигательного аппарата. Их сокращения изменяют положение костей относительно друг друга, порождая движение.

Мышцы составляют примерно третью часть общего веса человеческого тела. Человек может произвести массу сложных движений благодаря наличию в его теле нескольких сотен скелетных мышц. Они имеют различную форму, так как мышечные волокна могут располагаться параллельно, перисто и веретенообразно. Очень часто стержень мышцы разветвляется на ряд пучков, или, иначе, головок; это сложная, многоглавая мышца. К таким мышцам относится, скажем, двуглавая мышца плеча, обычно именуемая бицепсом, от латинского названия musculus biceps brachii, или же, например, очень большая четырехглавая мышца бедра, занимающая его переднюю поверхность и являющаяся сильным его разгибателем. Эта мышца имеет четыре головки, отсюда ее название.

Основу мышцы составляет мышечная ткань. Отдельные ее волокна связываются в группы, группы — в пучки. Соединение пучков образует мышцу. И волокна и пучки обволакиваются тонкой пленкой соединительной ткани, которая пронизана многочисленными кровеносными сосудами и нервами.

Волокна мышечной ткани очень тонкие и длинные. Их толщина составляет одну тысячную долю миллиметра, зато длина может достигать нескольких сантиметров. В мышечных волокнах находятся сократительные волоконца. Это тоненькие ниточки, располагающиеся вдоль длинной оси мышцы. Именно они обеспечивают основную функцию мышц — свойство сокращаться. В момент сокращения мышца укорачивается, зато утолщается в поперечнике. Сократительные волоконца построены из сегментов двух видов, светлых и темных, укладывающихся полосами. Отсюда название — поперечнополосатая мышечная ткань.

Кроме свойства сокращаться мышца обладает также эластичностью и растяжимостью. Эти свойства необходимы для ее правильного функционирования. В момент любого движения часть мышцы сокращается, в то время как остальные ее участки растягиваются. После окончания движения мышцы приобретают первоначальную длину именно благодаря своей эластичности.

Окончания мышечных волокон постепенно переходят в тонкие, но прочные нити — сухожильные концы, скрепленные с костью. Некоторые мышцы прикреплены непосредственно к кости, однако есть и такие мышцы (они очень редки), которые вообще не имеют точек прикрепления, например круговая мышца рта.

Скелетные мышцы воздействуют главным образом на кости, соединенные друг с другом при помощи суставов, и создают при этом различного вида рычаги. Если между началом и окончанием мышцы расположен только один сустав, на который воздействует эта мышца, то такая мышца называется односуставной. Иногда между началом и окончанием мышцы находится несколько суставов. Мышцы этого вида называются многосуставными. Их функции очень сложны, так как при сокращении они не только перемещают те кости, к которым прикреплены, но одновременно изменяют на своем пути положение и некоторых других костей.

Сокращение мышцы может происходить при различных обстоятельствах: места прикрепления мышц в момент сокращения могут взаимно сближаться или сохранять прежнее положение с возрастающим только напряжением мышечных волокон. В первом случае мы говорим об изотоническом сокращении (не изменяется напряжение мышцы, изменяется только ее длина). Работу, которую выполняет такая мышца, принято называть динамической работой.

Второй вид работы мышцы наблюдается тогда, когда места прикрепления мышцы в момент ее сокращения не приближаются друг к другу. Длина мышцы при этом не меняется, зато возрастает ее напряжение. В этом случае мы говорим об изометрическом сокращении. Оно может иметь место, когда мы, например, держим перед собой на вытянутой руке тяжелый портфель. Эту работу мышцы мы называем статической работой. Изометрическое сокращение очень часто используется в период болезни для тренировки мышц конечностей, находящихся в гипсовых повязках. Однако обычно в организме наблюдаются оба вида мышечных сокращений, то есть таких, при которых изменяются и напряжение и длина мышцы. Эти сокращения мы называем ауксотоническими.

Работающая мышца сокращается. Это сокращение ведет к росту напряжения или к уменьшению длины мышцы. Явление это называется концентрическим сокращением. В некоторых отдельных случаях мышца выполняет работу, постепенно расслабляясь, что называется эксцентрическим сокращением. Это случается тогда, когда в действие входит сила тяжести. Для примера: человек сидит на стуле; в этот момент выпрямление ноги в колене требует работы (концентрического сокращения) четырехглавой мышцы бедра; если бы эта мышца вдруг перестала действовать, нога мгновенно и резко опустилась бы на пол под влиянием силы тяжести. В данном случае — при медленном разгибании ноги в колене — действует четырехглавая мышца бедра, постепенно расслабляясь.

Мышечная деятельность организма, как из этого следует, чрезвычайно многообразна и почти никогда не прекращается. Даже бездействуя, мышцы сохраняют некоторое напряжение, называемое мышечным тонусом.

Напряжение, которого мышца может достигнуть, зависит от степени ее растяжимости. По мере роста исходной длины мышцы напряжение в этой мышце возрастает до некоторой оптимальной величины, после чего начинает резко снижаться. Это используется для замаха перед очень сильным движением. Для примера: перед ударом по мячу нога отводится назад.

Сила мышцы зависит от величины этой мышцы в разрезе. Упрощенно можно сказать, что чем мышца толще, тем она сильнее. Сила мышцы определяется с помощью специального прибора (динамометра) в пересчете на 1 кв. см ее разреза в поперечнике. Сила, которую может развить мышца, доходит до 10 кг на 1 кв. см ее поперечника.

Мышца, поднимая тяжесть, выполняет определенную работу, прямо пропорциональную развиваемой силе и степени сокращения мышцы. Существует некая оптимальная величина нагрузки, при которой работа, выполненная в период одного сокращения мышцы, может быть наибольшей. Эта оптимальная величина равна половине той максимальной силы, которую может развить, сократившись, мышца. Закономерность эта используется при разработке упражнений с нагрузкой, нацеленных на рост мышечной силы.

Чем быстрее сокращается мышца при данной нагрузке, тем большей мощностью эта мышца обладает (работа, выполненная в единицу времени).

Рассматривая работу мышцы, следует остановиться также на эффективном объеме выполняемого движения и его частотности. С этими вопросами связано понятие выносливости, определяемой длительностью выполнения движения. Мышца, обладающая способностью в течение долгого времени многократно повторять данное движение, например сгибать руку в локтевом суставе (или же в течение долгого времени выдерживать определенную нагрузку), обладает большой выносливостью.

Каждая мышца выполняет определенную работу, в свою очередь, работа оказывает на мышцу формирующее влияние. Общеизвестно, что бездействующая мышца слабеет и атрофируется. В этом случае говорят об атрофии, вызванной бездействием. Примером может служить атрофия мышц конечности, долгое время находившейся в гипсовой повязке. Упорный труд и тренировка ведут к росту мышечной массы. Увеличиваются также сила и выносливость мышц.

Действие скелетных мышц позволяет человеку выполнять массу сложных движений. Умелое выполнение данного движения зависит от точно отрегулированных сокращений отдельных мышц и координированных действий различных мышечных групп. Это требует тесного взаимодействия с нервной системой, что обеспечивают расположенные в мышцах многочисленные нервные окончания двигательных и чувствительных нервов.

Основной функциональной единицей мышцы является так называемая нейромоторная единица. Это комплекс, в который входят нейромоторная клетка, ее моторный нейрон и группа иннервируемых им мышечных волокон. Сила сокращения мышцы регулируется меньшей или большей частотой нервных импульсов, а также меняющимся числом одновременно включенных нейромоторных единиц. Для выполнения даже очень простого движения необходима работа многих нейромоторных единиц.

Мышца получает импульсы, иначе — стимулы, приводящие ее в действие с помощью двигательных нервных волокон. При нарушении целостности такого нерва мышца становится неуправляемой. В мышцах находятся также многочисленные чувствительные нервные окончания. Они посылают в спинной и головной мозг информацию о состоянии мышц. Кроме того, мышцы обладают особой системой, регулирующей мышечное напряжение.

Сократимость мышцы — это ее самое главное функциональное свойство. Одновременно в мышце происходят химические, тепловые и электрические реакции. Для изучения мышц эти последние имеют особое значение. При помощи сложной электрической аппаратуры, к которой присоединены специальные электроды в форме пластинок или игл, в свою очередь прикрепленных к мышце, можно получить важную и обширную информацию о ее деятельности.

И статическая и динамическая работа мышцы происходит за счет совершающихся в ней реакций. Энергию, необходимую для работы, дают мышце химические преобразования, главным образом сгорание некоторых углеводных соединений.

В момент сокращения в мышце развиваются сложные химические процессы, которые можно разделить на две фазы: бескислородную и кислородную. В первой, где изменения происходят без участия кислорода, образуется молочная кислота. Окончательному результату предшествует ряд промежуточных реакций с обязательным участием производных фосфорной кислоты. Во второй фазе часть молочной кислоты под влиянием кислорода распадается на двуокись углерода и на воду.

В условиях весьма интенсивной работы мышцы, когда даже усиленный ток крови не обеспечивает достаточного поступления кислорода, скапливается избыток молочной кислоты, окисление ее значительно отстает. Это ведет к временному переокислению мышцы и нарушению ее работоспособности.

В ходе химических реакций, совершающихся в мышцах, выделяется энергия, обеспечивающая мышечную работу и дающая определенное количество тепла. Около 20 процентов энергии, высвобождающейся в результате химических реакций, затрачивается на механическую работу мышцы. Остальная энергия преобразуется в тепло, согревающее мышцу и весь организм. По этой причине температура тела во время физической работы повышается. Даже несколько энергичных движений быстро повышают температуру тела.

источник

Мышечная система состоит из сорока процентов массы тела здорового организма. Фасции – мышечные покровы объединяют все мышцы человека в единый орган, выполняющий ряд жизненно важных функций: питательную, защитную, скелетную, эндокринную, но главной, все же, является двигательная. А движение – жизнь, поэтому знание анатомии человека, особенно, при занятиях спортом, поможет повысить спортивные результаты и снизить негативные последствия в процессе тяжелых нагрузок.

Мышечное волокно – единая клетка с тонкими (актиновыми) и толстыми (миозиновыми) нитями, окруженными митохондриями. Нити имеют возможность взаимодействовать на небольших участках волокон, это пространство называется саркомером и суммарно составляет 30% длины мышечного волокна, таким образом, мышца может сократиться лишь на 30% своей длины. Снаружи от каждого волокна располагаются питающий капилляр и отросток нервной клетки (аксон мотонейрона), в месте «подключения» к нервной клетке имеется цистерна, содержащая ионы кальция.

Механизм сокращения мышц (теория скользящих нитей 1954 г.): в покое зона взаимодействия наполнена «тормозной жидкостью» — ионами магния (Mg2+), что позволяет не затрачивать энергию в покое. При проходе возбуждающего импульса, ионы кальция выходят из цистерны в зону взаимодействия и снимают «тормоза» с актиновых нитей и активируют центры миозиновых молекул, после чего происходит сокращение. После окончания стимуляции кальций возвращается в цистерны, происходит расслабление.

В процессе работы мышц в качестве источника энергии выступает глюкоза (гликоген) и жирные кислоты при достаточной концентрации кислорода. Мышцы способны накапливать аденозинтрифосфат (источник энергии), но этих запасов в мышце хватает только на восемь одиночных сокращений. Для ресинтеза АТФ организм использует запасы креатинфосфата – накопитель-передатчик энергии от митохондрий к акто-миозиновым комплексам.

Костно-мышечная система человека. Рост и развитие мышц и костей тесно связанны – кости являются точкой опоры и складом кальция для мышц, а мышцы, в свою очередь, регулируют питание и рост костей в длину до 25 лет. Мышца прикрепляется сухожилием к надкостнице и при сокращении натягивает ее, создавая «поднадкостничное пространство», обменные процессы в котором значительно более интенсивны. Это позволяет клеткам строить костные балки более быстро и эффективно, и в результате кость растет в толщину. Это главный механизм усиления костей, поясняющий, что только повышением концентрации кальция в крови без сопутствующей мышечной работы, добиться результатов невозможно.

Мышцы человека и скелет образуют сложную систему опорно-двигательного аппарата, который по своей природе абсолютно уникален. Мышечная система состоит не только из скелетных мышц, но и гладких, а также сердечной мышцы (миокард). Принято считать, что мышц в теле человека, от самых мельчайших до крупных, около 640. Все они отличаются размерами, функциями и структурой.

Тело человека состоит из трех видов мышечной ткани:

  1. Гладкие мышцы – образуют полые органы, такие как: пищеварительный тракт, мочевой пузырь, кровеносные сосуды.
  2. Сердечные (миокард) – мышца перекачивает кровь в артерии.
  3. Поперечнополосатые – скелетные мышцы выполняют движение и составляют большую часть мышечной системы в теле человека. Именно эти мышцы выполняют двигательную функцию, необходимую не только для тренировок, но и в течение всей жизни. Рассмотрим скелетные волокна подробнее.

Таблица 1. Типы скелетных мышечных волокон.

Особенности Медленные (тонические) Быстрые (фазические)
Строение Много митохондрий. Красные – имеют развитый энергодобывающий аппарат, окисляющий углеводы и жирные кислоты. Мало митохондрий. Белые – более склонны запасать АТФ и креатинфосфат, после расхода которых поддерживают энергообмен безкислородным гликолизом.
Расположение В глубоких мышцах. Мышцы разгибатели и отводящие. Поверхностные мышцы. Мышцы сгибатели и приводящие.
Возбудимость Скорость проведения импульса = 2-8 м/с. Возбуждаются медленно и тяжело – требуют длительной и сильной внешней стимуляции («нервное усиление»). Обладают большой точностью. Скорость проведения импульса = 8-40 м/с. Быстро возбуждаются. Сокращение в 3 раза быстрее, чем у медленных волокон.
Энергообмен Способны активно использовать кислород в гликолизе для окисления резервных углеводов и жиров. Хорошо регулируют теплообмен. Устанавливается равновесие между работой и потребностью. Быстро создается кислородная задолженность. Склонны к анаэробным процессам с использованием гликогена. Быстро перегреваются. Приспособлены к энергодефициту и некоторое время могут работать без достаточного притока кислорода.
Читайте также:  Застыли все мышцы лица

По форме мышцы различаются на:

По направлению волокон делятся на мышцы:

  • с параллельными волокнами — длинные, веретенообразные и лентовидные мышцы;
  • с поперечными во­локнами;
  • с косыми волокнами – одноперистые, двуперистые.

По положению в теле делятся на:

  • поверхностные;
  • глубокие;
  • наружные;
  • внутренние;
  • медиальные;
  • латеральные.

Функциональные группы мышц при движении конечностей:

  • сгибатели;
  • разгибатели;
  • отводящие;
  • приводящие;
  • пронаторы;
  • супинаторы.

Относительно движения туловища различают:

  • сгибатели;
  • разгибатели;
  • наклоняющие (вправо – влево);
  • скручивающие (вправо – влево).

Также условно по типу взаимодействия при движении различают мышцы:

  • Агонисты – мышцы, выполняющие основную работу по заданному движению (главная мышца).
  • Синергисты – мышцы, помогающие главной осуществить заданное движение.
  • Антагонисты – мышцы, противодействующие заданному движению.
  • Стабилизаторы (фиксатор, нейтрализатор) – мышцы, удерживающие равновесие и безопасное положение суставов во время движения.

В теле человека выделяют основные группы мышц:

  • Мышцы туловища, к ним относят – мышцы шеи, спины, грудные и мышцы живота.
  • Мышцы верхних конечностей – мышцы плеча, дельтовидная группа, мышцы предплечья, кистей.
  • Мышцы нижних конечностей (ног) – ягодичные, четырехглавые, двуглавые мышцы бедра, приводящие, мышцы голени и стоп.

Мышечная группа Функции мышц В каких упражнениях и видах спорта активно включаются
Шея (грудинно-ключично-сосцевидная мышца). Наклон головы по сторонам, назад и вперед, поворот головы и шеи. Упражнения с отягощением для шеи. Борьба, бокс, футбол.
Большая грудная мышца: ключичная, грудинная. Приведение руки вперед, внутрь, вверх и вниз. Жимовые движения, отжимания от пола и на брусьях, сведения и разведения рук на блоках.
Прямая мышца живота. Наклон позвоночника вперед, разведение ребер. Все виды скручиваний из положения лежа по длинной и короткой амплитуде движения.
Большая передняя, зубчатая мышца. Поворот лопатки вниз, разведение лопатки, расширение грудной клетки, подъем рук Армейские жимы, пуловер. Тяжелая атлетика, метание, прыжки с шестом
Косые наружные мышцы живота. Сгибание позвоночника вперед и в стороны. Диагональные скручивания туловища, боковые наклоны. Толкание ядра, метание копья, теннис.
Трапециевидная мышца. Подъем и опускание плечевого пояса, передвижение лопаток, отведение головы назад и в стороны. Гребля, жимы вверх, стойка на руках. Тяжелая атлетика, гимнастика.
Широчайшие мышцы спины. Отведение руки вниз и назад, расслабление плечевого пояса, сгибание торса в стороны. Подтягивания на перекладинах и тяговые движения, гребля. Тяжелая атлетика, гимнастика.
Мышцы спины: надостная мышца, малая круглая мышца, большая круглая мышца, ромбовидная. Поворот рук наружу и внутрь, помощь в отведении рук, поворот, подъем и сведение лопаток Приседы, становая, гребля, толкание ядра, плавание, футбол.

Таблица 3. Мышцы верхних конечностей.

Мышечная группа Функции мышц В каких упражнениях и видах спорта активно включаются
Двуглавая мышца плеча. Сгибание рук в локтевых суставах, разворот кисти наружу. Сгибания рук – все виды, гребля, подтягивания, канат.
Клювовидно-плечевая мышц. Подъем рук. Жимы и разведение рук. Метание, боулинг, армрестлинг.
Плечевая мышца. Приведение предплечья. Сгибания локтей всеми хватами, канат, гребля.
Группа мышц предплечья: плечелучевая, длинный лучевой разгибатель кисти, локтевой разгибатель кисти, отводящая мышца, разгибатель большого пальца. Приведение предплечья к плечу, сгибание и выпрямление кисти и пальцев. Сгибание кистей, кистевые эспандеры, удержание веса пальцами, гиревой спорт, кроссфит.
Трехглавая мышца. Выпрямление руки и отведение назад. Разгибания – выпрямление рук в локтях, гребля, стойка на руках.
Группа дельтовидных мышц: передняя, средняя (боковая), задняя головка. Подъем рук. Жимы, подъемы, тяги свободного веса. Тяжелая атлетика, толкание, метание, гимнастика.

Таблица 4. Мышцы нижних конечностей.

Мышечная группа Функции мышц В каких упражнениях и видах спорта активно включаются
Четырехглавая мышца бедра. Выпрямление ног в тазобедренных и коленных суставах, поворот ноги наружу и внутрь. Разгибание ног в колене, приседы и жимы ногами. Велоспорт, скалолазание, легкая атлетика, футбол, пауэрлифтинг.
Бицепс бедра: полуперепончатая, полусухожильная мышца. Сгибание ног, разгибание бедра. Сгибание ног в колене, тяги и гиперэкстензия.
Большая ягодичная мышца. Выпрямление и поворот бедра наружу. Тяжелая атлетика, лыжный спорт, велоспорт, плавание.
Икроножная мышца. Выпрямление стоп, напряжение ноги в колене. Подъем на носок, приседы в пол амплитуды. Прыжки, бег, велоспорт.
Камбаловидная мышца. Способствует разгибанию стопы. Подъем на носок сидя в тренажере.
Передняя большеберцовая, длинная малоберцовая мышца. Выпрямление, сгибание и поворот ступни. Подъем на носки и подъем пальцев стоп, стоя на пятке.

Зная анатомию мышц можно не только разбираться в их строении и функциях, но и раскрыть свой потенциал в определенных видах спорта или выбрать для себя правильную нагрузку. Какой бы вид спорта ни выбирали, помните, только равномерное и гармоничное развитие всех основных мышечных групп позволит выглядеть спортивно и оставаться здоровее, поддерживая такую важную функцию опорно-двигательного аппарата – как движение.

источник

Есть три вида мышечной ткани: висцеральные, мышцы сердца и скелета.
Висцеральные — находятся внутри органов, таких как желудок, кишечник и кровеносные сосуды. Самые слабые из всех мышц внутренних органов, служат для перемещения веществ. Висцеральные мышцы не могут непосредственно контролироваться сознанием. Термин «гладкая» используется для висцеральной мышцы, так как она имеет гладкую структуру, однородный вид (если смотреть под микроскопом). Её внешний вид резко контрастирует с сердечной и скелетными мышцами.
Сердечная мышца расположена только в сердце, она отвечает за перекачивание крови по всему телу. Сердечная мышца не контролируется сознательно. В то время как гормоны и сигналы мозга могут регулировать скорость сжатия сердечной мышцы, стимулируя сокращение. Естественный стимулятор биения сердца — сердечная мышечная ткань, которая заставляет другие клетки сокращаться.
Клетки сердечной мышечной ткани являются поперечно — полосатыми, то есть, они представляют из себя светлые и темные полосы, если смотреть под световым микроскопом. Расположение белковых волокон внутри клеток вызывает эти светлые и темные полосы. Мышечная клетка очень сильна, в отличие от висцеральной.
Клетки сердечной мышцы являются разветвленными или X Y формы, клетки плотно соединены между собой специальными переходами, называемыми интеркалированными дисками. Интеркалированные диски состоят из пальцевидной проекции двух соседних ячеек, которые сцепляются и обеспечивают прочную связь между клетками. Разветвленная структура и интеркалированные диски позволяют мышечным клеткам противостоять высокому давлению крови и напряжению при перекачке крови в течение всей жизни. Эти функции также способствуют быстрому распространению электрохимических сигналов от клетки к клетке так, что сердце может биться как единое целое.

Скелетные мышцы являются единственной мышечной тканью в организме человека, которая управляется сознательно. Каждое физическое действие, которое человек сознательно выполняет (например: разговор, ходьба или письмо) требует движения скелетных мышц. Скелетные могут сжиматься, чтобы перемещать части тела ближе к кости, к которой мышца прикрепляется. Большинство скелетных мышц прикреплены к двум костям через суставы, так что они служат для перемещения частей этих костей ближе друг к другу.
Каркасные (скелетные) мышечные клетки образуются, когда множество мелких клеток — предшественников скомковываются вместе, чтобы сформировать длинные, прямые, многоядерные волокна. Исчерчены каркасные мышцы так же, как и сердечная, поэтому они очень сильны. Скелетная мышца получает свое название от того, что она всегда подключаются к скелету, по крайней мере, в одном месте.

Большинство скелетных прикреплены к двум костям через сухожилия. Сухожилия — жесткие полосы плотной регулярной соединительной ткани; сильные коллагеновые волокна прочно прикрепляют мышцы к костям. Сухожилия находятся в крайнем напряжении, когда они тянутся, так что они очень сильно вплетены в покрытия мышц и костей.

Мышцы двигаются за счет сокращения их длины, натягивания сухожилий и перемещения костей ближе друг к другу. Одна из костей втягивается по направлению к другой кости, которая остается неподвижной. Место на движущейся кости, которая соединяется с мышцей через сухожилия называется вставкой. Мышцы живота находятся между сухожилиями, что позволяет делать фактическое сокращение.

Их названия происходят на основе множества различных факторов, в том числе местонахождения, происхождения и вставки, количества, формы, размера, направления и функции.

Много мышц получают имена от анатомической области. Брюшная и прямая, поперечная брюшная, например, находятся в брюшной полости. Другие, как и передняя большеберцовая, названы из-за части кости (передняя часть голени), к которой они присоединены. Другие мышцы используют симбиоз двух видов названий, как плечелучевая, которая названа в честь области нахождения.

Некоторые мышцы названы на основе их подключения к стационарной и движущейся кости. Эти мышцы становится очень легко определить, когда вы знаете имена костей, к которым они присоединены.

Некоторые подключаются к более чем 1 кости или более чем в одном месте и имеют более чем один источник. Мышца сразу с двумя происхождения называется бицепсом, а с тремя происхождения — трицепсной. И, наконец, мышца с четырьмя происхождениями называется четырехглавой.

Также важно классифицировать мышцы по форме. Например, дельтовидные имеют дельта — или треугольную форму. Зубчатые имеют зубчатую или пилообразный форму. Ромбовидные — обладают формой ромба.
Размер может быть использован, чтобы различать два типа мышц, найденных в одном и том же регионе. Область ягодичной части содержит три мышцы, дифференцированные по размеру: ягодичная большая, ягодичная средняя и малая. И, наконец, направления мышечных волокон могут быть использованы для их идентификации. В брюшине существует несколько широких и плоских. Мышцы с волокнами, расположенными вверх и вниз — являются прямыми, работающие в поперечном направлении (слева направо) — поперечные, а работающие под углом, являются косыми.

Мышцы иногда классифицируют по типу функции, которую они выполняют. Большинство мышц предплечья именуются в зависимости от их функций, потому что они расположены в том же регионе и имеют одинаковые формы и размеры. Например, сгибатели предплечья сгибают запястья и пальцы.
Супинатор — это мышца, которая поднимает запястье ладонью вверх. В ноге есть такие, которые называются аддукторами, чья роль заключается в стягивании ног.

Чаще всего они работают в группах, чтобы произвести точные движения. Мышца, которая производит какое — либо конкретное движение тела известна как агонист или тягач. Агонисты всегда парны с антагонистами, которые производят противоположный эффект на одних и тех же костях. Например, двуглавая мышцы плеча сгибает руку в локте. В качестве антагониста для этого движения — трехглавая плеча — расширяет руку в локте. Когда трицепсы расширяют руку, бицепс будет считаться антагонистом.

В дополнение к агонист / антагонист классификации, другие мышцы работают, чтобы поддержать движение агониста.
Синергистами являются мышцы, которые помогают стабилизировать движение и уменьшить лишние движения. Они обычно находятся в областях вблизи агониста и часто подключаются к той же кости. Если вы поднимаете что-то тяжелое, они помогают держать тело в вертикальном положении неподвижно, так что вы поддерживаете свой баланс во время подъема.

Скелетные мышечные волокна значительно отличаются от других тканей организма из — за их узкоспециализированных функций. Многие из органелл, которые составляют мышечные волокна являются уникальными для данного типа клетки.

Сарколемма является клеточной мембраной мышечных волокон. Сарколемма выступает в качестве проводника для электрохимических сигналов, которые стимулируют мышечные клетки. Подключенные к сарколемме поперечные трубочки (Т-трубочки) помогают переносить электрохимические сигналы в середину мышечного волокна. Саркоплазматический ретикулум служит в качестве хранилища для ионов кальция (Са2 +), которые имеют жизненно важное значение для сокращения мышц.
Митохондрии, движущая сила клетки, в изобилии находятся в мышечных клетках, чтобы обеспечивать энергией в виде АТФ активные мышцы. Большая часть структуры мышечного волокна выполнена из миофибрилл, которые являются сократительными структурами клетки. Миофибриллы составлены из многих белковых волокон, расположенных в повторяющихся субъединицах, называемых саркомерами. Саркомера является функциональной единицей мышечных волокон.

Саркомеры изготавливаются из двух типов белковых волокон: толстых нитей и тонких нитей.

Толстые нити состоят из множества соединенных звеньев белка миозина. Миозин является белком, который вызывает мышцы сокращаться.
Тонкие нити состоят из трех белков:

Актин.
Актин образует спиральную структуру, которая составляет большую часть массы тонкой нити.

Тропомиозин.
Тропомиозин — длинный волокнистый белок, который оборачивается вокруг актина и охватывает миозин, связывая с актином.

Тропонин.
Белок, связывающийся очень плотно с тропомиозином во время мышечного сокращения.

Основной функцией мышечной системы является движение. Мышцы являются единственной тканью в организме, что имеет возможность перемещать другие части тела.
Связанная с функцией движения является вторая функция мускульной системы: поддержание позы и положения тела. Мышцы зачастую держат тело неподвижно или в определенном положении, а не вызывают движение. Мышцы, отвечающие за положение тела имеют наивысшую выносливость — они выполняют свои функции в течение всего дня, не становясь усталыми.
Еще одна функция, связанная с движением является движение веществ внутри тела. Сердечные и висцеральные мышцы, в первую очередь, ответственны за транспортировку веществ, таких как кровь или питательные вещества из одной части тела в другую.

Читайте также:  Заболевание двуглавой мышцы плеча

Последняя функция мышечной ткани является генерация тепла . В результате высокой скорости метаболизма сокращающейся мышцы, наша мышечная система производит большое количество отработанного тепла. Многие небольшие сокращения мышц в организме производят наше естественное тепло тела. Когда мы прилагаем усилия больше, чем обычно, дополнительные сокращения мышц приводят к повышению температуры тела и в конечном итоге к потливости.

Мышцы скелетной системы работают вместе с костями и суставами образуя рычажные системы. Они действуют как передатчики усилия, а кость выступает в качестве опоры; при движении мышцы и кости, объект перемещается.

Есть три класса рычагов, но подавляющее большинство рычагов в теле — рычаги третьего класса. Рычаг третьего класса представляет собой систему, в которой точка опоры находится на конце рычага. В организме, рычаги третьего класса, служат для увеличения расстояния для сокращения мышцы.

Нервные клетки, называемые моторными нейронами, управляют скелетными мышцами. Каждый двигательный нейрон контролирует несколько мышечных клеток в группе. Когда двигательный нейрон получает сигнал от мозга, он стимулирует все клетки мышц в то же время.
Размер двигательных единиц изменяется по всему телу, в зависимости от функции. Мышцы, которые выполняют тонкие движения — как мышцы глаз или пальцев, имеют очень много нейронов для повышения точности контроля мозга над этими структурами. Мышцы, которые требуют много сил, чтобы выполнять свои функции, как ноги или руки — имеют много мышечных клеток и меньше нейронов в каждом блоке.

Когда положительные ионы достигают саркоплазматического ретикулума, ионы Са2 + высвобождаются и протекают в миофибриллы. Ионы Са2 + связываются с тропонином, что вызывает молекулу тропонина изменять форму и переместить близлежащие молекулы тропомиозина. Тропомиозин отодвигается от миозина и связывается с молекулой актина, что позволяет актину и миозину связываться друг с другом.

Силой сжатия мышц можно управлять двумя факторами: количеством двигательных единиц (нейронов), участвующих в сокращении и количеством импульсов от нервной системы. Один нервный импульс моторного нейрона вызовет краткое напряжение группы мышц, а затем заставит расслабиться. Если двигательный нейрон обеспечивает несколько сигналов в течение короткого периода времени, то сила и продолжительность сжатия увеличивается. Если двигательный нейрон обеспечивает много нервных импульсов в быстрой последовательности, мышца может войти в состояние полного и прочного сокращения. Мышца останется в сжатом положении, пока скорость сигнала нерва не замедлится или до тех пор, пока мышца станет слишком усталой, чтобы поддерживать напряжение.

Не все сокращения мышц производят движение. Изометрическое сокращение — легкие схватки, которые увеличивают напряжение в мышцах, не оказывая достаточной силы, чтобы переместить часть тела. Когда тело напряжено из-за стресса, мышцы выполняют изометрическое сокращение. Поддержание позы является также результатом изометрических сокращений. Сужения мышц, что действительно производит движение является изотоническими сокращениями. Изотонические сокращения необходимы для наращивания мышечной массы за счет подъема веса.

Мышечный тонус является естественным состоянием, в котором скелетные мышцы остаются во всё время. Мышечный тонус обеспечивает легкое натяжение мышц, чтобы предотвратить повреждение мышц и суставов от резких движений, а также помогает поддерживать осанку тела. Все не повреждённые мышцы поддерживают некоторое количество мышечного тонуса во всё время.

Cкелетные мышечные волокона, можно разделить на два типа в зависимости от того, как они производят и используют энергию:

I тип — волокна с очень медленным и осторожным сокращением. Они очень устойчивы к усталости, потому что используют аэробное дыхание для производства энергии из сахара. Находятся I типа волокона в мышцах по всему телу для выносливости и осанки, рядом с позвоночником и в регионах шеи.

Волокна типа II разбиты на две подгруппы: II типа А и типа II B.
Тип II волокна А быстрее и сильнее, чем I типа волокона, но не имеют столько же выносливости. Типа II A волокна находятся по всему телу, но особенно в ногах,где они работают, чтобы поддерживать ваше тело на протяжении долгого времени для ходьбы и стояния.

Тип II B — волокна еще быстрее и сильнее, чем II типа А, но еще меньше выносливые. Тип II B волокна немного светлее, чем тип I и тип II А из-за их отсутствия миоглобина — кислородного пигмента. Находятся волокна типа II B по всему телу, но особенно в верхней части, где они дают скорость и силу рукам и груди за счет выносливости.

Мышцы получают энергию из различных источников, в зависимости от ситуации, в которой мышца работает. Мышцы способны использовать аэробное дыхание, когда необходимо произвести от низкого до умеренного уровня силы упражнения. Аэробное дыхание требует кислорода, чтобы произвести около 36-38 молекул АТФ из молекулы глюкозы. Аэробные дыхания является очень эффективным и может продолжаться до тех пор, пока мышца получает достаточное количество кислорода и глюкозы. Когда мы используем мышцы, чтобы произвести высокий уровень силы, они становятся настолько плотными, что находящийся кислород в крови не может войти в мышцу. Это условие приводит к тому, что мышцы используют для выработки энергии брожение молочной кислоты (форма анаэробного дыхания). Анаэробное дыхание менее эффективно аэробного дыхания — только 2 АТФ производится из каждой молекулы глюкозы.
Для того, чтобы мышцы работали в течение более длительного периода времени, мышечные волокна содержат несколько важных энергетических молекул. Миоглобин, красный пигмент содержащийся в мышцах, содержит железо и сохраняет кислород в манере, подобной гемоглобину крови. Кислород из миоглобина позволяет мышцам продолжать аэробное дыхание в отсутствии кислорода. Другой химикат, который помогает мышцам работать — креатинфосфат. Мышцы используют энергию в виде АТФ, происходит превращение АТФ в АДФ, чтобы выпустить свою энергию. Креатинфосфат жертвует свою фосфатную группу АДФ, чтобы включить её в АТФ, с тем, чтобы обеспечить дополнительную энергию для мышц. Наконец, мышечные волокна содержат энергию аккумулирующих гликогенов, больших макромолекул, изготовленных из множества связанной между собой глюкозы. Активные мышцы отщепляют глюкозу от молекул гликогена, чтобы обеспечить внутренний запас топлива.

Когда мышцы исчерпали энергию во время аэробного или анаэробного дыхания, то быстро утомляются и теряют способность сокращаться. Это состояние известно как мышечная усталость. Утомление мышц не говорит о содержании очень малого количества или отсутствия кислорода, глюкозы или АТФ, но вместо этого имеет много продуктов — отходов дыхания, таких как молочная кислота и АДФ. Тело должно принимать дополнительное количество кислорода после физической нагрузки, чтобы заменить кислород, который находился в миоглобине мышечных волокон, а также для питания аэробного дыхания, которое обеспечивает поставки энергии внутри клетки. Восстановление потребления кислорода (кислородное голодание) — это восприятие дополнительного кислорода, который организм должен принять, чтобы восстановить мышечные клетки, их привести в состояние покоя. Это объясняет, почему появляется одышка в течение нескольких минут после напряженной деятельности — ваше тело пытается восстановить себя в нормальное состояние.

источник

Мышцы и их функция

Мышечная ткань. Для осуществления различных движений в организме человека, как и у всех позвоночных животных, имеются 3 вида мышечной ткани: скелетная, сердечная и гладкая. Каждому виду ткани свойствен свой тип видоизмененных клеток — мышечных волокон.
(Увеличить)

Скелетные мышцы образованы поперечнополосатой мышечной тканью, мышечные волокна которой собраны в пучки. Внутри волокон проходят белковые нити, благодаря которым мышцы способны укорачиваться — сокращаться.

Сердечная мышца, как и скелетная, состоит из поперечнополосатых мышечных волокон. Эти волокна в определенных участках как бы сливаются (переплетаются). Благодаря этой особенности сердечная мышца способна быстро сокращаться. (Увеличить)

Строение мышцы. Скелетные мышцы состоят из пучков по перечнополосатых мышечных волокон. К каждой мышце подходят кровеносные сосуды и нервы. Мышцы покрыты соединительнотканной оболочкой и прикрепляются к кости при помощи сухожилий.
(Увеличить)

Роль нервной системы в регуляции деятельности мышц. К скелетным мышцам подходят нервы, содержащие чувствительные и двигательные нейроны. По чувствительным нейронам передаются импульсы от рецепторов кожи, мышц, сухожилий, суставов в центральную нервную систему.

По двигательным нейронам проводятся импульсы от спинного мозга к мышце, в результате чего мышца сокращается. Таким образом, сокращения мышц в организме совершаются рефлекторно. В то же время на двигательные нейроны спинного мозга влияют импульсы из головного мозга, в частности из коры больших полушарий. Это делает движения произвольными. Сокращаясь, мышцы приводят в движение части тела, обусловливают перемещение организма или поддержание определенной позы. (Увеличить)

Согласованная работа мышц сгибателей и разгибателей. В выполнении человеком любого движения принимают участие две группы противоположно действующих мышц: сгибатели и разгибатели суставов.

Согласованная деятельность мышц-сгибателей и мышц-разгибателей возможна благодаря чередованию процессов возбуждения и торможения в спинном мозге. Например, сокращение мышц-сгибателей руки вызвано возбуждением двигательных нейронов спинного мозга. Одновременно расслабляются мышцы-разгибатели. Это связано с торможением двигательных нейронов.

Мышцы-сгибатели и разгибатели сустава могут одновременно находиться в расслабленном состоянии. Так, мышцы свободно висящей вдоль тела руки находятся в состоянии расслабления. При удержании гири или гантели в горизонтально вытянутой руке наблюдается одновременное сокращение мышц-сгибателей и разгибателей сустава.

Работа мышц. Сокращаясь, мышца действует на кость как на рычаг и производит механическую работу. Любое мышечное сокращение связано с расходом энергии. Источниками этой энергии служат распад и окисление органических веществ (углеводов, жиров, нуклеиновых кислот). Органические вещества в мышечных волокнах подвергаются химическим превращениям, в которых участвует кислород. В результате образуются продукты расщепления, главным образом углекислый газ и вода, и освобождается энергия. (Увеличить)

Протекающая через мышцы кровь постоянно снабжает их питательными веществами и кислородом и уносит из них углекислый газ и другие продукты распада.

Утомление при мышечной работе. При длительной физической работе без отдыха постепенно уменьшается работоспособность мышц. Временное снижение работоспособности, наступающее по мере выполнения работы, называют утомлением. После отдыха работоспособность мышц восстанавливается.

При выполнении ритмических физических упражнений утомление наступает позднее, так как в промежутках между сокращениями работоспособность мышц частично восстанавливается.

В то же время при большом ритме сокращений скорее развивается утомление. Работоспособность мышц зависит и от величины нагрузки: чем больше нагрузка, тем скорее развивается утомление.

Утомление мышц и влияние на их работоспособность ритма сокращений и величины нагрузки изучал русский физиолог И.М. Сеченов. Он выяснил, что при выполнении физической работы очень важно подобрать средние величины ритма и нагрузки. При этом производительность будет высокой, а утомление наступает позже.

Распространено мнение, что лучший способ восстановления работоспособности — это полный покой. И.М. Сеченов доказал ошибочность такого представления. Он сравнивал, как восстанавливается работоспособность в условиях полного пассивного отдыха и при смене одного вида деятельности другим, т.е. в условиях активного отдыха. Оказалось, что утомление проходит скорее и работоспособность восстанавливается раньше при активном отдыхе.

источник

Поднимите руку. Теперь сожмите кулак. Сделайте шаг. Правда, легко? Человек выполняет привычные действия практически не задумываясь. Около 700 мышц (от 639 до 850, согласно различным способам подсчета) позволяют человеку покорять Эверест, спускаться на морские глубины, рисовать, строить дома, петь и наблюдать за облаками.

Но скелетная мускулатура — далеко не все мускулы человеческого тела. Благодаря работе гладкой мускулатуры внутренних органов, по кишечнику идет перистальтическая волна, совершается вдох, сокращается, обеспечивая жизнь, самая важная мышца человеческого тела — сердце.

Мышца (лат. muskulus) — орган тела человека и животных, образованный мышечной тканью. Мышечная ткань имеет сложное строение: клетки-миоциты и покрывающая их оболочка — эндомизий образуют отдельные мышечные пучки, которые, соединяясь вместе, образуют непосредственно мышцу, одетую для защиты в плащ из соединительной ткани или фасцию.

Мышцы тела человека можно поделить на:

Как видно из названия, скелетный тип мускулатуры крепится к костям скелета. Второе название — поперечно-полосатая (за счет поперечной исчерченности), которая видна при микроскопии.К этой группе относятся мышцы головы, конечностей и туловища. Движения их произвольные, т.е. человек может ими управлять. Эта группа мышц человека обеспечивает передвижение в пространстве, именно их с помощью тренировок можно развить или «накачать».

Гладкая мускулатура входит в состав внутренних органов — кишечника, мочевого пузыря, стенки сосудов, сердца. Благодаря ее сокращению повышается артериальное давление при стрессе или передвигается пищевой комок по желудочно-кишечному тракту.

Читайте также:  Защемление нерва в мышце руки

Сердечная — характерна только для сердца, обеспечивает непрерывную циркуляцию крови в организме.

Интересно узнать, что первое мышечное сокращение происходит уже на четвертой неделе жизни эмбриона – это первый удар сердца. С этого момента и до самой смерти человека сердце не останавливается ни на минуту. Единственная причина остановки сердца в течение жизни — операция на открытом сердце, но тогда за этот важный орган работает АИК (аппарат искусственного кровообращения).

Единицей строения мышечной ткани является мышечное волокно. Даже отдельное мышечное волокно способно сокращаться, что свидетельствует о том, что мышечное волокно – это не только отдельная клетка, но и функционирующая физиологическая единица, способная выполнять определенное действие.

Отдельная мышечная клетка покрыта сарколеммой – прочной эластичной мембраной, которую обеспечивают белки коллаген и эластин. Эластичность сарколеммы позволяет мышечному волокну растягиваться, а некоторым людям проявлять чудеса гибкости – садиться на шпагат и выполнять другие трюки.

В сарколемме, как прутья в венике, плотно уложены нити миофибрилл, составленные из отдельных саркомеров. Толстые нити миозина и тонкие нити актина формируют многоядерную клетку, причем диаметр мышечного волокна – не строго фиксированная величина и может варьироваться в довольно большом диапазоне от 10 до 100 мкм. Актин, входящий в состав миоцита, — составная часть структуры цитоскелета и обладает способностью сокращаться. В состав актина входит 375 аминокислотных остатка, что составляет около 15% миоцита. Остальные 65 % мышечного белка представлены миозином. Две полипептидные цепочки из 2000 аминокислот формируют молекулу миозина. При взаимодействии актина и миозина формируется белковый комплекс — актомиозин.

Когда анатомы в Средние века начали темными ночами выкапывать трупы, чтобы изучить строение человеческого тела, встал вопрос о названиях мускулов. Ведь нужно было объяснить зевакам, которые собрались в анатомическом театре, что же ученый в данный момент кромсает остро заточенным ножом.

Ученые решили их называть либо по костям, к которым они крепятся (например, грудинно-ключично-сосцевидная мышца), либо по внешнему виду (например, широчайшая мышца спины или трапециевидная), либо по функции, которую они выполняют (длинный разгибатель пальцев). Некоторые мышцы имеют исторические названия. Например, портняжная названа так потому, что приводила в движение педаль швейной машины. Кстати, эта мышца — самая длинная в человеческом теле.

источник

Сокращение мышц — это сложный процесс, состоящий из целого ряда этапов. Главными составляющими здесь являются миозин, актин, тропонин, тропомиозин и актомиозин, а также ионы кальция и соединения, которые обеспечивают мышцы энергией. Рассмотрим виды и механизмы мышечного сокращения. Изучим, из каких этапов они состоят и что необходимо для цикличного процесса.

Мышцы объединяются в группы, у которых одинаковый механизм мышечных сокращений. По этому же признаку они и разделяются на 3 вида:

  • поперечно-полосатые мышцы тела;
  • поперечно-полосатые мышцы предсердий и сердечных желудочков;
  • гладкие мышцы органов, сосудов и кожи.

Поперечно-полосатые мышцы входят в опорно-двигательный аппарат, являясь его частью, так как помимо них сюда входят сухожилия, связки, кости. Когда реализуется механизм мышечных сокращений, выполняются следующие задачи и функции:

  • тело передвигается;
  • части тела перемещаются друг относительно друга;
  • тело поддерживается в пространстве;
  • вырабатывается тепло;
  • кора активируется посредством афферентации с рецептивных мышечных полей.
  • двигательный аппарат внутренних органов, в который входят бронхиальное дерево, легкие и пищеварительная трубка;
  • лимфатическая и кровеносная системы;
  • система мочеполовых органов.

Как и у всех позвоночных животных, в человеческом организме выделяют три самых важных свойства волокон скелетных мышц:

  • сократимость — сокращение и изменение напряжения при возбуждении;
  • проводимость — движение потенциала по всему волокну;
  • возбудимость — реагирование на раздражитель посредством изменения мембранного потенциала и ионной проницаемости.

Мышцы возбуждаются и начинают сокращаться от нервных импульсов, идущих от центров. Но в искусственных условиях используют электростимуляцию. Мышца тогда может раздражаться напрямую (прямое раздражение) или через нерв, иннервирующий мышцу (непрямое раздражение).

Механизм мышечных сокращений подразумевает преобразование химической энергии в механическую работу. Этот процесс можно измерить при эксперименте с лягушкой: ее икроножную мышцу нагружают небольшим весом, а затем раздражают легкими электроимпульсами. Сокращение, при котором мышца становится короче, называется изотоническим. При изометрическом сокращении укорачивания не происходит. Сухожилия не позволяют при развитии мышцей силы укорачиваться. Еще один ауксотонический механизм мышечных сокращений предполагает условия интенсивных нагрузок, когда мышца укорачивается минимальным образом, а сила развивается максимальная.

В поперечно-полосатые скелетные мышцы входит множество волокон, находящихся в соединительной ткани и крепящихся к сухожилиям. В одних мышцах волокна расположены параллельно длинной оси, а в других они имеют косой вид, прикрепляясь к центральному тяжу сухожильному и к перистому типу.

Главная особенность волокна заключается в саркоплазме массы тонких нитей — миофибрилл. В них входят светлые и темные участки, чередующиеся друг с другом, а у соседних поперечно-полосатые волокна находятся на одном уровне — на поперечном сечении. Благодаря этому получается поперечная полосатость по всему волокну мышц.

Саркомером является комплекс из темного и двух светлых дисков, и он отграничивается Z-образными линиями. Саркомеры — это сократительный аппарат мышцы. Получается, что сократительное мышечное волокно состоит из:

  • сократительного аппарата (системы миофибрилл);
  • трофического аппарата с митохондриями, комплексом Гольджи и слабой эндоплазматической сетью;
  • мембранного аппарата;
  • опорного аппарата;
  • нервного аппарата.

Мышечное волокно разделяется на 5 частей со своими структурами и функциями и является целостной частью ткани мышц.

Этот процесс у поперечно-полосатых мышечных волокон реализуется посредством нервных волокон, а именно аксонов мотонейронов спинного мозга и головного ствола. Один мотонейрон иннервирует несколько волокон мышц. Комплекс с мотонейроном и иннервируемыми мышечными волокнами называют нейромоторной (НМЕ), или двигательной единицей (ДЕ). Среднее число волокон, которые иннервирует один мотонейрон, характеризует величину ДЕ мышцы, а обратную величину называют плотностью иннервации. Последняя является большой в тех мышцах, где движения небольшие и «тонкие» (глаза, пальцы, язык). Малое ее значение будет, напротив, в мышцах с «грубыми» движениями (например, туловище).

Иннервация может быть одиночной и множественной. В первом случае она реализуется компактными моторными окончаниями. Обычно это характерно для крупных мотонейронов. Мышечные волокна (называющиеся в этом случае физическими, или быстрыми) генерируют ПД (потенциалы действий), которые распространяются на них.

Множественная иннервация встречается, к примеру, во внешних глазных мышцах. Здесь не генерируется потенциал действия, так как в мембране нет электровозбудимых натриевых каналов. В них распространяется деполяризация по всему волокну из синаптических окончаний. Это необходимо для того, чтобы привести в действие механизм мышечного сокращения. Процесс здесь происходит не так быстро, как в первом случае. Поэтому его называют медленным.

Исследования мышечного волокна сегодня проводятся на основе рентгеноструктурного анализа, электронной микроскопии, а также гистохимическими методами.

Рассчитано, что в каждую миофибриллу, диаметр которой составляет 1 мкм, входит примерно 2500 протофибрилл, то есть удлиненных полимеризованных молекул белков (актина и миозина). Актиновые протофибриллы в два раза тоньше миозиновых. В покое эти мышцы находятся так, что актиновые нити кончиками проникают в промежутки между миозиновыми протофибриллами.

Узкая светлая полоса в диске А свободна от актиновых нитей. А мембрана Z скрепляет их.

На миозиновых нитях есть поперечные выступы длиной до 20 нм, в головках которых находится порядка 150 молекул миозина. Они отходят биополярно, и каждая головка соединяет миозиновую с актиновой нитью. Когда происходит усилие актиновых центров на нитях миозина, актиновая нить приближается к центру саркомера. В конце миозиновые нити доходят до линии Z. Тогда они занимают собой весь саркомер, а актиновые находятся между ними. При этом длина диска I сокращается, а в конце он исчезает полностью, вместе с чем линия Z становится толще.

Так, по теории скользящих нитей, объясняется сокращение длины волокна мышцы. Теория, получившая название «зубчатого колеса», была разработана Хаксли и Хансоном в середине двадцатого века.

Главным в теории является то, что не нити (миозиновые и актиновые) укорачиваются. Длина их остается неизменной и при растяжении мышц. Но пучки тонких нитей, проскальзывая, выходят между толстыми нитями, уменьшается степень их перекрытия, таким образом происходит сокращение.

Молекулярный механизм мышечного сокращения посредством скольжения актиновых нитей заключается в следующем. Миозиновые головки соединяют протофибриллу с актиновой. При их наклонах происходит скольжение, двигающее актиновую нить к центру саркомера. За счет биполярной организации миозиновых молекул на обеих сторонах нитей создаются условия для скольжения актиновых нитей в разные стороны.

При расслаблении мышц миозиновая головка отходит от актиновых нитей. Благодаря легкому скольжению расслабленные мышцы растяжению сопротивляются гораздо меньше. Поэтому они пассивно удлиняются.

Механизм мышечного сокращения кратко можно подразделить на следующие этапы:

  1. Мышечное волокно стимулируется, когда потенциал действия поступает от мотонейронов из синапсов.
  2. Потенциал действия создается на мембране мышечного волокна, а затем распространяется к миофибриллам.
  3. Совершается электромеханическое сопряжение, представляющее собой преобразование электрического ПД в механическое скольжение. В этом обязательно участвуют ионы кальция.

Для лучшего понимания процесса активации волокна ионами кальция удобно рассмотреть структуру актиновой нити. Длина ее составляет порядка 1 мкм, толщина — от 5 до 7 нм. Это пара закрученных ниток, которые напоминают мономер актина. Примерно через каждые 40 нм здесь находятся сферические тропониновые молекулы, а между цепями — тропомиозиновые.

Когда ионы кальция отсутствуют, то есть миофибриллы расслабляются, длинные тропомиозиновые молекулы блокируют крепление актиновых цепей и мостиков миозина. Но при активизации ионов кальция тропомиозиновые молекулы опускаются глубже, и участки открываются.

Тогда миозиновые мостики прикрепляются к актиновым нитям, а АТФ расщепляется, и сила мышц развивается. Это становится возможным за счет воздействия кальция на тропонин. При этом молекула последнего деформируется, проталкивая тем самым тропомиозин.

Когда мышца расслаблена, в ней на 1 грамм сырого веса содержится больше 1 мкмоль кальция. Соли кальция изолированы и находятся в особых хранилищах. В противном случае мышцы бы все время сокращались.

Хранение кальция происходит следующим образом. На разных участках мембраны клетки мышцы внутри волокна имеются трубки, через которые происходит соединение со средой вне клеток. Это система поперечных трубочек. А перпендикулярно ей находится система продольных, на концах которых — пузырьки (терминальные цистерны), расположенные в непосредственной близости к мембранам поперечной системы. Вместе получается триада. Именно в пузырьках хранится кальций.

Так ПД распространяется внутрь клетки, и происходит электромеханическое сопряжение. Возбуждение проникает в волокно, переходит в продольную систему, высвобождает кальций. Таким образом осуществляется механизм сокращения мышечного волокна.

При взаимодействии обеих нитей при наличии ионов кальция немалая роль отводится АТФ. Когда реализуется механизм мышечного сокращения скелетной мышцы, энергия АТФ применяется для:

  • работы насоса натрия и калия, который поддерживает постоянную концентрацию ионов;
  • этих веществ по разные стороны мембраны;
  • скольжения нитей, укорачивающих миофибриллы;
  • работы насоса кальция, действующего для расслабления.

АТФ находится в клеточной мембране, нитях миозина и мембранах ретикулума саркоплазматического. Фермент расщепляется и утилизируется миозином.

Известно, что миозиновые головки взаимодействуют с актином и содержат элементы для расщепления АТФ. Последняя активизируется актином и миозином при наличии ионов магния. Поэтому расщепление фермента происходит при прикреплении миозиновой головки к актину. При этом чем больше поперечных мостиков, тем скорость расщепления будет выше.

После завершения движения молекула АФТ обеспечивает энергией для разделения участвующих в реакции миозина и актина. Миозиновые головки разделяются, АТФ расщепляется до фосфата и АДФ. В конце подсоединяется новая АТФ-молекула, и цикл возобновляется. Таковым является механизм мышечного сокращения и расслабления на молекулярном уровне.

Активность поперечных мостиков будет продолжаться лишь до тех пор, пока происходит гидролиз АТФ. При блокировке фермента мостики не станут снова прикрепляться.

С наступлением смерти организма уровень АТФ в клетках падает, и мостики остаются устойчиво прикрепленными к актиновой нити. Так происходит стадия трупного окоченения.

Ресинтез возможно реализовать двумя путями.

Посредством ферментативного переноса от креатинфосфата фосфатной группы на АДФ. Так как запасов в клетке креатинфосфата намного больше АТФ, ресинтез реализуется очень быстро. В то же время посредством окисления пировиноградной и молочной кислот ресинтез будет осуществляться медленно.

АТФ и КФ могут исчезнуть полностью, если ресинтез будет нарушен ядами. Тогда и кальциевый насос прекратит работу, вследствие чего мышца необратимо сократится (то есть настанет контрактура). Таким образом, нарушится механизм мышечного сокращения.

Подытоживая вышесказанное, отметим, что сокращение волокна мышцы состоит в укорочении миофибрилл в каждом из саркомеров. Нити миозина (толстые) и актина (тонкие) связаны концами в расслабленном состоянии. Но они начинают скользящие движения друг навстречу к другу, когда реализуется механизм мышечного сокращения. Физиология (кратко) объясняет процесс, когда под влиянием миозина выделяется необходимая энергия для преобразования АТФ в АДФ. При этом активность миозина будет реализована лишь при достаточном содержании ионов кальция, накапливающихся в саркоплазматической сети.

источник