Меню Рубрики

Центр сокращения сердечной мышцы

Функция сократимости представляет собой способность мышцы сердца реагировать сокращением на возникшее возбуждение. Сила сокращения сердечного волокна прямо пропорциональна степени удлинения его во время диастолы и зависит от высоты артериального давления в аорте, количества оставшейся крови в полостях сердца и степени поражения миокарда.

Сократительная функция сердца является главной в деятельности его как насоса, осуществляющейся на основе координации отдельных мышечных клеток. Соединяясь друг с другом через, вставочные диски в продольном направлении и образуя боковые отверстия, клетки формируют мышечные волокна. Вставочные диски характеризуются низким электрическим сопротивлением, что облегчает распространение возбуждения от клетки к клетке, а тем самым и их сокращение.

В сердце постоянно протекают два основных процесса: проведение электрохимического импульса и превращение химической энергии в механическую. Проведение электрохимического импульса от клетки к клетке осуществляется с помощью специализированных участков клеточной поверхности — запирающих фасций. Превращение химической энергии в механическую происходит в саркомерах (функциональных единицах сократительного миокарда).

Каждое мышечное волокно сократительного миокарда состоит из 200—500 сократительных протеиновых структур — миофибрилл. Они содержат миозин и актин. Миозин обладает специфической способностью связывать различные ионы, главным образом, кальция и магния. По данным Draper и Hodge (1950), в его состав входит также и калий. В. А. Энгельгардт (1941) показал наличие у миозина ферментативных свойств — способности катализировать расщепление аденозинтрифосфата (АТФ) на аденозиндифосфат (АДФ) и фосфат. АТФ н креатининфосфат (КФ) образуются в митохондриях.

От момента деполяризации клетки до ее сокращения в ней происходит ряд биохимических и биофизических изменений. АТФ в присутствии миозина и актина постепенно расщепляется на АДФ и фосфат с выделением энергии, причем не в форме теплоты, так как при этом выделилось бы большое количество тепла, что привело бы к денатурации белка. Предполагают, что энергия при распаде АТФ непосредственно передается контрактильным структурам миокарда с образованием АДФ и фосфорилированного белка и без промежуточного образования теплоты превращается в электрическую. Таким образом, в сердце во время систолы происходит распад АТФ, следствием чего является сокращение сердечной мышцы. В расслабленной мышце имеется особый фактор расслабления, который возникает в присутствии ионов магния и АТФ. В момент сокращения кальций временно подавляет образование фактора расслабления и нейтрализует его действие.

Миокард состоит из двух типов клеток, соединенных между собой посредством так называемых вставочных знаков. Большинство мышечных клеток сердца выполняют сократительную функцию и называются сократительными клетками — кардиомиоцитами.

Отличительный признак миокарда — наличие интеркалярных пластинок, которые разграничивают мышечные волокна сердца, имея поперечное лестничное расположение по отношению к мышечным волокнам. Волокна сердечной мышцы гораздо тоньше, чем волокна скелетных мышц. Они содержат больше саркоплазмы и меньше сарколеммы. Важными отличительными признаками сердечной мышцы являются значительное количество митохондрий и отсутствие продольного распространения возбуждения по сердцу: импульс проскакивает от одной клетки к другой в области интеркалярных пластинок.

Повышение содержания кальция увеличивает сократительную способность мышцы сердца, а отсутствие его делает невозможным сокращение миокарда. Действие кальция на механизм сокращения осуществляется на протяжении всего периода деполяризации мембраны. Понижение концентрации внеклеточного натрия усиливает, сократительную способность мышцы сердца, так как увеличивает скорость проникновения кальция в клетку. Повышение концентрации натрия блокирует вход кальция и устраняет сокращение. Калий косвенно вовлекается в процесс мышечной деятельности — выходя из клетки в период ее возбуждения, он оставляет свободными внутриклеточные анионные места в эндоплазме, которые занимает кальций, вызывающий в конечном счете сокращение.

источник

2. Сократимость сердечной мышцы: понятие, механизм. Гетеро- и гомометрические механизмы регуляции сократимости.

Сердечная мышца реагирует на раздражители нарастающей силы по закону «все или ничего». Это обусловлено ее морфологическими особенностями. Между отдельными мышечными клетками сердечной мышцы имеются так называемые вставочные диски, или участки плотных контактов — нексусы, образованные участками плазматических мембран двух соседних миокардиальных клеток. В некоторых участках плазматические мембраны, образующие контакт, прилегают друг к другу так близко, что кажутся слившимися. Мембраны на уровне вставочных дисков обладают очень низким электрическим сопротивлением и поэтому возбуждение распространяется от волокна к волокну беспрепятственно, охватывая миокард целиком. Поэтому сердечную мышцу, состоящую из морфологически разъединенных, но функционально объединенных мышечных волокон, принято считать функциональным синцитием.

Сердечная мышца сокращается по типу одиночного сокращения, т. к. длительная фаза рефрактерности препятствует возникновению тетанических сокращений. В одиночном сокращении сердечной мышцы выделяют: латентный период, фазу укорочения (систолу), фазу расслабления (диастолу).

Способность сердечной мышцы сокращаться только по тину одиночного сокращения обеспечивает выполнение сердцем основной гемодинамической функции — насоса. Сокращения сердца по типу тетануса делали бы невозможным ритмическое нагнетание крови в кровеносные сосуды. Именно это и происходит при фибрилляции волокон миокарда и мерцательной аритмии сердца.

Серию последовательных явлений в клетке миокарда, начинающихся с пускового механизма сокращения — потенциала действия (ПД) и завершающихся укорочением миофибрилл, называют сопряжением возбуждения и сокращения. При распространении ПД по мембране ионы кальция поступают к сократительным белкам, в основном, из межклеточного пространства и вызывают те же процессы взаимодействия актиновых и миозиновых протофибрилл, что и в скелетном мышечном волокне. Расслабление кардиомиоцита также обусловлено удалением кальция кальциевым насосом из протофибриллярного пространства в межклеточную среду.

Важным процессом в сокращении кардиомиоцита является вход ионов кальция в клетку во время ПД. Наряду с тем, что входящий в клетку кальций увеличивает длительность ПД и, как следствие, продолжительность рефракторного периода, он является важнейшим фактором в регуляции силы сокращения сердечной мышцы.

Так, удаление ионов кальция из межклеточных пространств приводит к полному разобщению процессов возбуждения и сокращения — потенциал действия остается практически в неизменном виде, а сокращения кардиомиоцита не происходит.

Миогенная авторегуляция включает в себя гетерометрический и гомеометрический механизмы. Гетерометрический механизм опосредован внутриклеточными взаимодействиями и связан с изменением взаиморасположения актиновых и миозиновых нитей в миофибриллах кардиомиоцитов при растяжении миокарда кровью, поступающей в полости сердца. Растяжение миокардиоцитов приводит к увеличению количества миозиновых мостиков, способных соединить миозиновые и актиновые нити во время сокращения. Чем более растянут кардиомиоцит, тем на большую величину он может укоротиться при сокращении, и тем более сильным будет это сокращение. Этот вид регуляции был установлен на сердечно-легочном препарате и сформулирован в виде «закона сердца» или закона Франка-Старлинга. Согласно этому, закону, чем больше миокард растянут во время диастолы, тем больше сила последующего сокращения (систолы). Предсистолическое растяжение миокарда обеспечивается дополнительным объемом крови, нагнетаемым в желудочки во время систолы предсердии. При утомлении сердечной мышцы и длительной нагрузки (например, при гипертонии) этот закон проявляется только в том случае, если сердечная мышца растягивается значительно больше, чем обычно. Однако, величина минутного объема сердца и в этих состояниях длительное время удерживается на нормальном уровне. При дальнейшем нарастании утомления или нагрузки этот показатель уменьшается.

Гомеометрическая авторегуляция сердца связана с определенными межклеточными отношениями и не зависит от пред систолического его растяжения. Большую роль в гомеометрической регуляции играют вставочные диски — нексусы, через которые миокардиоциты обмениваются ионами и информауией. Реализуется данная форма регуляции в виде «эффекта Анрепа» — увеличение силы сердечного сокращения при возрастании сопротивления в магистральных сосудах.

Другим проявлением гомеометрической регуляции является так называемая ритмоинотропная зависимость: изменение силы сердечных сокращений при изменении частоты. Это явление обусловлено изменением длительности потенциала действия миокардиоцитов и, следовательно, изменением количества экстрацеллюлярного кальция, входящего в миокардиоцит при развитии возбуждения.

3. Задача. Если при ярком освещении пристально посмотреть на какой-либо предмет, а потом закрыть глаза, то на протяжении некоторого времени можно видеть этот предмет. Каким свойством нервных центров объясняется это явление?

Последействие, это запаздывание окончания рефлекторного ответа после прекращения действия раздражителя. Связано с циркуляцией нервных импульсов по замкнутым цепям нейронов.

Посттетаническая потенциация, это усиление рефлекторной реакции в результате длительного возбуждения нейронов центра. Под влиянием многих серий нервных импульсов, проходящих с большой частотой через синапсы, выделяется большое количество нейромедиатора в межнейронных синапсах. Это приводит к прогрессирующему нарастанию амплитуды возбуждающего постсинаптического потенциала и длительному (несколько часов) возбуждению нейронов.

источник

Сердечным циклом называют последовательность событий, происходящих во время одного сокращения сердца. Цикл состоит из тех фаз:

1. В правое предсердие поступает под низким давлением дезоксигенированная кровь, а в левое — оксигенированная кровь. Постепенно предсердия растягиваются. Вначале двустворчатый и трехстворчатый клапаны остаются закрытыми, но по мере заполнения предсердий кровью давление в них растет; когда оно становится выше, чем в желудочках, клапаны открываются. При этом некоторое количество крови переходит в расслабленные желудочки. Этот период покоя всех камер сердца называется диастолой.

2. Когда диастола заканчивается, оба предсердия одновременно сокращаются. Эта фаза носит название систолы предсердий и приводит к тому, что в желудочки выталкивается дополнительное количество крови. Почти тотчас же после систолы предсердий сокращаются желудочки, и это сокращение носит название систолы желудочков. Во время систолы желудочков двустворчатый и трехстворчатый клапаны закрываются. Давление в желудочках возрастает и вскоре оказывается выше, чем в аорте и легочной артерии, в результате чего открываются полулунные клапаны и кровь выталкивается в эти эластичные сосуды. Во время систолы желудочков кровь ударяет в закрытые предсердно-желудочковые (атриовентрикулярные) клапаны и в результате этого удара возникает первый тон сердца («лаб»).

3. Систола желудочков заканчивается, и за ней следует диастола желудочков. Под действием высокого давления, создавшегося в аорте и легочной артерии, часть крови устремляется обратно в сторону желудочков, кровь заполняет полулунные клапаны и они закрываются, препятствуя возвращению крови в желудочки. При ударе этого обратного тока крови о полулунные клапаны возникает второй тон сердца («дап»).

Во время систолы желудочков стенки эластичных артериальных сосудов растягиваются, а во время диастолы возвращаются в исходное состояние и выталкивают кровь, благодаря чему поступление крови в большой и малый круги кровообращения носит пульсирующий характер. По мере удаления крови от сердца пульсация становится менее выраженной, пока совсем не затухает в капиллярах и венах, где кровь течет равномерно. Один полный цикл состоит из одной систолы и одной диастолы и продолжается около 0,8 с.

Ударный (систолический) объем —это количество крови, выбрасываемое одним желудочком при 1 систоле. Среднее значение ударного объема у собак — 20 мл.

Механизм возбуждения и сокращения сердца

Когда сердце извлекают из тела животного и помещают в хорошо оксвигенированный физраствор, оно в течение длительного времени продолжает сокращаться, несмотря на отсутствие каких-либо нервных иди эндокринных стимулов. Этот факт свидетельствует о миогенной природе сердечного ритма, т.е. о том, что оно имеет собственный, «встроенный» в него механизм, возбуждающий сокращения мышечных волокон.

Импульсы, вызывающие ритмические сокращения сердца, возникают в особом участке правого предсердия —синоатриальный (синусо-предсердный) узел, который располагается у места впадения верхней полой вены. Он состоит из небольшого числа беспорядочно расположенных сердечных мышечных волокон, бедных миофибриллами и иннервированных окончаниями вегетативных нейронов.

В клетках синоатриального узла за счет разности концентраций ионов поддерживается мембранный потенциал –90 мВ. Мембране этих клеток всегда свойственна высокая проницаемость для натрия, поэтому ионы натрия непрерывно диффундируют внутрь клетки. Поступление ионов натрия ведет к деполяризации мембраны, в результате чего в клетках, соседствующих с узлом, возникают распространяющиеся потенциалы действия. Волна возбуждения проходит по мышечным волокнам сердца и заставляет их сокращаться. Синоатриальный узел называют водителем сердечного ритма (пейсмейкером), так как именно в нем зарождается каждая волна возбуждения, которая в свою очередь служит стимулом для возникновения следующей волны. В синоатриальном узле возникает 70-110 имп. в минуту.

Раз начавшись, сокращение распространяется по стенкам предсердия через сеть сердечных мышечных волокон со скоростью 1 м/с. Оба предсердия сокращаются более или менее одновременно. Мышечные волокна предсердий и желудочков полностью разделены соединительнотканной предсердно-желудочковой перегородкой, и связь между ними осуществляется только в одном участке правого предсердия — атриовентрикулярном (предсердно-желудочковом ) узле.В этом узле возникает 40-60 импульсов в минуту.

Ткань этого узла сходна с тканью синоатриального узла. От атриовентрикулярного узла отходит пучок специализированных волокон (атриовентрикулярный пучок) — единственный путь, по которому волна возбуждения передается от предсердий к желудочкам. Передача импульсов от синоатриального узла к атриовентрикулярному происходит с задержкой в 0,15 с, благодаря чему систола предсердий успевает закончиться раньше, чем начинается систола желудочков. Атриовентрикулярный пучок переходит в пучок Гиса, который состоит из видоизмененных сердечных волокон и от которого отходят более тонкие веточки — волокна Пуркинье. Импульсы проходят по пучку со скоростью 5 м/с, т.е. 10-20 импульсов в минуту, и распространяются в конце концов по всему миокарду желудочков. Оба желудочка сокращаются одновременно, причем волна их сокращения начинается в верхушке сердца и распространяется вверх, выталкивая кровь из желудочков в артерии, которые отходят от сердца вертикально вверх.

Сердечная мышца обладает рядом особенностей, позволяющих ей выполнять роль насоса, который гонит кровь по всему телу в течение всей жизни животного. Начав сокращаться, сердечная мышца не может отвечать ни на какие другие стимулы до тех пор, пока она не начнет расслабляться. Эта стадия носит название рефрактерного периода, а отрезок времени, в течение которого мышца не отвечает ни на какие стимулы, называется периодом абсолютной рефрактерности. У сердечной мышцы этот период более продолжителен, чем у других типов мышц, и это позволяет ей энергично и быстро сокращаться, не испытывая утомления. Благодаря этой особенности сердечная мышца не способна к длительному сокращению, называемому тетанусом, и в ней не создается кислородной задолженности.

Регуляция сердечного ритма

Собственный ритм сокращений сердца задается синоатриальным узлом. Даже после удаления из тела и помещения в искусственную среду сердце продолжает ритмично сокращаться, хотя и медленно. Однако в организме к сердечно-сосудистой системе предъявляются постоянно меняющиеся требования, а соответственно должна меняться и частота сердечных сокращений. Эти изменения достигаются благодаря динамичной и согласованной работе двух регуляторных механизмов — нервного и гуморального, осуществляющих тот гомеостатический контроль, который поддерживает достаточное кровоснабжение тканей при непрерывно меняющихся условиях.

Количество крови, протекающей через сердце за 1 мин., называется минутным объемом; оно зависит от объема крови, выбрасываемой сердцем за одно сокращение, и от частоты сокращений. У собак средняя величина минутного объема 2 л/мин. Минутный объем, или сердечный выброс, — очень важная переменная величина, и одним из способов ее регуляции служит изменение частоты сердечных сокращений сердца.

Нервная регуляция сердечного ритма

В продолговатом мозге — одном из отделов заднего мозга — имеется ряд участков, регулирующих деятельность сердечно-сосудистой системы, в том числе и частоту сердечных сокращений сердца. От расположенного здесь кардиоингибиторного центра отходит пара блуждающих нервов, содержащих парасимпатические волокна и направляющихся по обеим сторонам трахеи к сердцу. В сердце парасимпатические волокна подходят к синоатриальному узлу, атриовентрикулярному узлу и пучку Гиса, и поступающие по этим волокнам импульсы уменьшают частоту сердечных сокращений. В продолговатом мозге находится также прессорный участок сосудо-двигательного (вазомоторного) центра, от которого берут начало нервы симпатической системы. Пройдя вдоль позвоночника, эти нервы подходят в грудном отделе к сердцу и посылают импульсы синоатриальному узлу. Импульсы, поступающие по симпатическим волокнам, ускоряют работу сердца. Совместная деятельность тормозящих и стимулирующих центров продолговатого мозга контролирует частоту сердечных сокращений.

К сердечно-сосудистым центрам продолговатого мозга подходят чувствительные нервные волкна от рецепторов растяжения (барорецепторы), расположенных в стенках дуги аорты, каротидного синуса и полых вен. Импульсы, поступающие от аорты и каротидного синуса, замедляют работу сердца, тогда как импульсы, приходящие от полых вен, ускоряют ее. При увеличении количества крови в этих сосудах их стенки растягиваются, в результате чего возрастает число импульсов, посылаемых от них сердечно-сосудистые центры продолговатого мозга.

Например, при интенсивной физической работе мышцы сильно сокращаются, что ускоряет возвращение крови к сердцу по венам. Поступление большого количества крови в полые вены вызывает их растяжение, а это приводит к ускорению работы сердца. Одновременно повышенный приток крови к сердцу вызывает растяжение сердечной мышцы, и в ответ на это сердце сильнее сокращается и выбрасывает больше крови во время систолы (увеличение ударного объема).

Увеличение ударного объема приводит к растяжению стенок аорты и сонных артерий и к возникновению импульсов, которые поступают в кардиоингибиторный центр и вызывают замедление работы сердца. Таким образом, существует автоматический механизм саморегуляции, который препятствует слишком частым сокращениям сердца и позволяет так изменять его активность, чтобы в любой момент оно могло эффективно справляться с объемом притекающей крови.

Факторы, регулирующие сердечный ритм

Существует целый ряд гуморальных и иных факторов, действующих непосредственно на сердечную мышцу или на синоатриальный узел. Эти факторы указаны в таблице:

Гуморальные и иные факторы, влияющие на частоту сокращений сердца:

Стимул Влияние на сердечный ритм
Повышение рН замедляет
Снижение рН (например, при высоком содержании СО2, как в случае физической нагрузки) ускоряет
Низкая температура замедляет
Высокая температура ускоряет
Неорганические ионы
Эндокринные факторы (например, тироксин, инсулин, половые гормоны, адреналин, гормоны гипофиза) влияют на ритм сердца прямо или косвенно

На сердечно-сосудистый центр влияют многие факторы, в том числе эмоции. В этих случаях сенсорные импульсы передаются в мозг и через внутримозговые связи в сердечно-сосудистый центр, который на них соответствующим образом реагирует (см. выше таблицу).

На этот центр в каждый момент всегда влияет определенное сочетание нервных и иных факторов, а не какой-то один из них. Активность сердечно-сосудистого центра зависит также от возраста и состояния здоровья индивидуума.

Регуляция кровяного давления

Кровяное давление зависит от целого ряда факторов — от частоты и силы сердечных сокращений, ударного объема сердца, сопротивления току крови со стороны сосудов (периферическое сопротивление). Сопротивление току крови меняется в зависимости от сокращения или расслабления гладкой мускулатуры сосудистых стенок, особенно в артериолах. При сужении сосудов (вазоконстрикции) периферическое сопротивление увеличивается, а при их расширении (вазодилятации) уменьшается. Повышение сопротивления приводит к повышению кровяного давления, а снижение сопротивления — к его падению. Все эти изменения контролируются вазомоторным центром продолговатого мозга.

Нервные волокна идут от вазомоторного центра ко всем артериолам тела. Изменение диаметра этих сосудов зависит в основном от тонуса мышц, сужающих сосуды (вазоконстрикторов); мышцы, расширяющие сосуды (вазодилятаторы), играют меньшую роль.

Активность вазомоторного центра регулируется импульсами, поступающими от рецепторов, воспринимающих давление (барорецепторов), которые находятся в стенках аорты и каротидных синусах сонных артерий. Стимуляция парасимпатических волокон в этих участках, вызываемая повышением сердечного выброса, приводит к расширению сосудов во всем теле, вследствие чего падает кровяное давление и уменьшается частота сокращений сердца. При снижении кровяного давления наблюдается противоположная картина: происходит стимуляция симпатических волокон, и это ведет к общему сужению кровеносных сосудов и компенсаторному повышению кровяного давления.

Читайте также:  Тендинит полусухожильной мышцы колена

Химическая регуляция вазомоторного центра

В каротидных тельцах, лежащих в области разветвления сонных артерий, находятся хеморецепторы, которые возбуждаются при высоком содержании СО2 в притекающей крови и посылают импульсы в вазомоторный центр продолговатого мозга. Нервные волокна, идущие от этих хеморецепторов, приходят в вазомоторный центр в одном пучке с волокнами от барорецепторов каротидного синуса. В ответ на стимулы, приходящие по этому общему пути, вазомоторный центр посылает к кровеносным сосудам импульсы, под действием которых сосуды сужаются и кровяное давление возрастает. Повышенная активность тканей и органов сопровождается обычно усиленным образованием СО2и кровь будет быстрее поступать в легкие и, значит, углекислота будет быстрее обмениваться в легких на кислород.

Углекислота может также оказывать прямое воздействие на гладкую мускулатуру кровеносных сосудов. При резком увеличении активности какой-либо ткани в ней образуются большие количества СО2, что сразу ведет к расширению сосудов в данной области. В них тотчас увеличивается кровоток, и к активным клеткам поступает больше кислорода и глюкозы. Углекислота, поступившая из этой области в общий кровоток, будет влиять на активность вазомоторного центра, способствуя сужению сосудов м других частях тела. Эта ситуация ясно показывает, каким динамичным и гибким может быть регулирование кровяного давления, а значит, и всего процесса циркуляции и распределения крови.

Другие факторы, в частности различные виды эмоционального стресса (возбуждение, боль и т.п.) повышают активность симпатической нервной системы, и в результате кровяное давление повышается. Выброс адреналина при стимуляции мозгового вещества надпочечников импульсами, поступающими из высших отделов ЦНС, приводит к ускорению ритма сердца и способствует общему сужению сосудов и повышению кровяного давления.

Регуляция уровня метаболитов в крови

Одним из наиболее важных метаболитов, присутствующих в крови, является глюкоза. Уровень глюкозы в крови должен находится под строгим контролем, поскольку она служит главным субстратом тканевого дыхания и должна непрерывно поступать в клетки. Особенно чувствительны к нехватке глюкозы клетки головного мозга, которые не могут использовать никакие другие метаболиты в качестве источника энергии. Недостаток глюкозы вызывает потерю сознания. Нормальный уровень глюкозы в крови составляет около 90 мг на 100 мл, но может колебаться от 70 мг натощак до 150 мг после приема пищи.

Регуляция уровня глюкозы в крови является примером сложного гомеостатического механизма, находящегося под контролем эндокринной системы и включающего координированную секрецию по меньшей мере шести различных гормонов и две цепи отрицательной обратной связи. Повышение уровня глюкозы в крови (гипергликемия) стимулирует секрецию инсулина, а его падение (гипогликемия) приводит к угнетению секреции инсулина и к стимуляции секреции глюкагона и других гормонов, повышающих уровень глюкозы в крови.

Регуляция ритма сердца и кровяного давления

Изменения частоты сердечных сокращений и кровяного давления косвенно влияют на состав тканевой жидкости и участвуют в поддержании его на относительно постоянном уровне, несмотря на колебания внешних условий и меняющиеся потребности тканей.

Существуют две важные формы отклонений от нормального ритма сердца — тахикардия и брадикардия. Тахикардия — общее название для всех случаев повышенной частоты сердечных сокращений. Она может вызываться разнообразными факторами, в том числе эмоциями (тревога, ярость) и повышенной активностью щитовидной железы. Сильная тахикардия часто бывает результатом изменения электрической активности сердца. Различные участки сердца, лежащие за пределами синоатриального узла (определяющие нормальный ритм сердца), могут становится очагами возникновения стимулов, вызывающих сокращения сердечной мышцы, и это приводит к тахикардии.

Брадикардия — состояние, при котором сердце сокращается реже, чем в норме. Брадикардия может быть связана с гипофункцией щитовидной железы или с изменением активности синоатриального узла и других проводящих участков сердца. Характерна для спортсменов, у которых увеличен ударный объем сердца и для поддержания постоянного минутного объема в покое нужна меньшая частота сокращений.

Устранению временной тахикардии или брадикардии и восстановлению нормального сердечного ритма способствует антагонистическое воздействие ни синоатриальный узел со стороны симпатической и парасимпатической нервной системы.

Кровяное давление — это давление крови на стенки кровеносных сосудов. Обычно его измеряют в плечевой артерии (у собак в области бедренной артерии) с помощью сфигмоманометра. Систолическое давление возникает в результате сокращения желудочков, а диастолическое отражает давление крови в артериях при расслабленных желудочках. Кровяное давление зависит от возраста, пола и состояния здоровья, и у собак бывает 120 (105-140) систолическое и 80 (45-100) мм рт. ст. — диастолическое. На кровяное давление влияют как сила сердечных сокращений, так и сопротивление периферических кровеносных сосудов; оно отражает общее состояние сердца и сосудов. Условия, вызывающие сужение сосудов и уменьшение их эластичности (атеросклероз) или нарушение работы почек, могут вызывать повышение кровяного давления (гипертония) и тем самым увеличивать нагрузку на сердце и артерии. В свою очередь растяжение артериальных стенок может привести к их ослаблению и разрыву или к закупорке суженных сосудов сгустками крови (тромбоз). Эти нарушения очень опасны, если происходят в мозгу или в сердце и приводят к кровоизлияниям в мозг или к тромбозу мозговых или коронарных сосудов.

Сердечно-сосудистая система представляет собой сеть для передвижения веществ из одного участка организма в другой. Ее эффективное строение позволяет использовать очень ограниченный объем циркулирующей жидкости для того, чтобы регулировать химический состав всей внутренней среды организма. В ходе функционирования сердечно-сосудистой системы используются только процессы передвижения жидкости и диффузии. Вещества переносятся между органами сердечно-сосудистой системы с помощью процесса — общий транспортный поток, — процесса простого переноса веществ потоком жидкости, в которой они содержатся. Скорость, с которой они переносятся зависит только от концентрации вещества в крови и скорости кровотока. Ток жидкости возможен лишь при наличии разности давления. Поэтому артериальное давление крови является чрезвычайно важным и тщательно регулируемым параметром сердечно-сосудистой системы. Величина кровотока в органах непосредственно регулируется за счет изменения величины радиусов сосудов в данных органах: чем меньше он будет, тем меньше будет и скорость кровотока.

Кровь непрерывно циркулирует в организме и проходит через артерии, капилляры и вены. Интерстициальная (тканевая) жидкость образуется при прохождении крови по капиллярам. Стенки капилляров проницаемы для всех компонентов крови, за исключением эритроцитов и белков плазмы. Из-за разностей давлений в плазме крови и в артериальном конце капилляров, жидкость выходит из капилляра в мельчайшие промежутки между клеткам и образует тканевую жидкость, где происходит обмен веществами между кровью и тканями. Кровь не может постоянно терять так много жидкости, и значительная часть этой жидкости возвращается обратно в кровяное русло. Это возвращение происходит двумя путями. Часть тканевой жидкости поступает обратно в кровеносные капилляры за счет того, что в венозном конце капилляров давление крови становится ниже, чем в плазме крови. Остальная часть тканевой жидкости диффундирует в замкнутые с одного конца лимфатические капилляры и с этого момента называется лимфой. Лимфатические капилляры, соединяясь между собой, образуют более крупные лимфатические сосуды. Лимфа движется по этим сосудам благодаря сокращению мышц, а обратному ее току препятствуют клапаны, которые имеются в крупных сосудах и действуют подобно клапанам вен.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Только сон приблежает студента к концу лекции. А чужой храп его отдаляет. 8967 — | 7626 — или читать все.

источник

Человеческое сердце устроено сложно, и это не удивительно, ведь оно выполняет важнейшую работу, благодаря которой в человеческом организме поддерживается жизнь. Поговорка о том, что «движение — жизнь» прекрасно подходит к описанию работы сердца человека. Пока бьётся сердце и движется кровь по сосудам, жизнь продолжается. Как же устроено сердце, и что же помогает ему трудиться без устали?

Биение сердца, его сокращение, становится возможным благодаря средней оболочке сердца, которая называется миокард или сердечная мышца. Напомним, что человеческий мотор состоит из трёх слоёв: наружного или сердечной сумки (перикарда), выстилающего все полости сердца, внутреннего (эндокарда), и среднего, обеспечивающего непосредственно сокращение и толчки — миокарда. Согласитесь, в организме нет мышцы важнее. Поэтому миокард по праву можно назвать мышцей жизни.

Все отделы человеческого «мотора»: предсердия, правый и левый желудочки имеют в своём строении миокард. Если представить стенку сердца в разрезе, то сердечная мышца занимает в процентном соотношении от 75 до 90 % всей толщины стенки. В норме толщина мышечной ткани правого желудочка от 3,5 до 6,3 мм, левого желудочка — 11-14 мм, а предсердий — 1,8-3 мм. Левый желудочек является самым «накаченным» по отношению к другим отделам сердца, поскольку именно он осуществляет основную работу по изгнанию крови в сосуды.

Сердечная мышца состоит из волокон, которые имеют поперечно-полосатую исчерченность. Сами волокна при более детальном рассмотрении состоят из особых клеток, которые имеют название кардиомиоциты. Это особые, уникальные клетки. Они содержат одно ядро, чаще расположенное в центре, много митохондрий и других органелл, а также миофибриллы — сократительные элементы, благодаря которым и происходит сокращение. Эти структуры напоминают нити, не однородные, а состоящие их более тонких актиновых ниточек, и более толстых — миозиновых.

Чередование более толстых и тонких ниточек позволяет наблюдать в световом микроскопе исчерченность. Участок миофибриллы, размером в 2,5 мкм, содержащий таковую исчерченность называется саркомером. Именно он — элементарная сократительная единица клетки миокарда. Саркомеры — это кирпичики, из которых складывается огромное здание — миокард. Клетки миокарда представляют собой некий симбиоз гладкой мышечной ткани и скелетной.

Сходство с мускулатурой скелета обеспечивает исчерчённость миокарда и механизм сокращение, а от гладкой кардиомиоциты «взяли» непроизвольность, неподконтрольность сознанию и наличие в структуре клетки одного ядра, которое обладает способностью, менять форму и размеры, таким образом подстраиваясь под сокращения. Кардиомиоциты чрезвычайно «дружны» — они словно держатся за руки: каждая клеточка плотно прилегает друг другу, а между мембранами клеток расположен специальный мостик — вставочный диск.

Таким образом, все сердечные структуры тесно взаимосвязаны друг с другом и образуют единый механизм, единую сеть. Это единство очень важно: чрезвычайно быстро позволяет распространяться возбуждению от одной клетки к последующей, а также передавать сигнал другим клеткам. Благодаря данным особенностям строения за 0,4 сек cтановится возможным передача возбуждения и ответ сердечной мышцы в виде её сокращения.

Сердечная мышца — это не только клетки сократительной природы, это еще и клетки, обладающие уникальной способностью к генерированию возбуждения, клетки, проводящие это возбуждение, сосуды, элементы соединительной ткани. Средняя оболочка сердца имеет сложную структуру и организацию, которая в совокупности играет важнейшую роль в работе нашего мотора.

Верхние камеры или предсердия обладают меньшей толщиной сердечной мышцы по сравнению с нижними. Миокард верхних «этажей» сложноустроенного «здания» — сердца, имеет 2 слоя. Наружный слой — общий для обеих предсердий, его волокна идут горизонтально и окутывают две камеры сразу. Внутренний слой включает в себя продольно расположенные волокна, они уже являются раздельными для правой и левой верхней камеры. Следует отметить, что мышечная ткань предсердий и желудочков не связана между собой, волокна данных структур не переплетаются, благодаря чему обеспечивается возможность раздельного их сокращения.

Нижние «этажи» сердца имеют более развитый миокард, в котором выделяют целых три слоя. Наружный и внутренний — общие для обеих камер, наружный слой идет косо к верхушке, образуя завитки вглубь органа, а внутренний слой имеет продольную направленность. Сосочковые мышцы и трабекулы — элементы внутреннего слоя желудочкового миокарда. Средний слой располагается между двумя вышеописанными и образован волокнами, отдельными для левого желудочка и правого, их ход циркулярный или круговой. В большей степени из волокон среднего слоя образована межжелудочковая перегородка.

Межжелудочковая перегородка сердца

Разделяет левый желудочек от правого и делает человеческий «мотор» четырёхкамерным не менее важное, чем сердечные камеры, образование — межжелудочковая перегородка (МЖП). Данная структура позволяет крови правого и левого желудочка не смешиваться, сохраняя оптимальное кровообращение. По большей части по своему строению МЖП состоит из волокон миокарда, но её верхний участок — перепончатая часть — представлена фиброзной тканью.

Анатомы и физиологи выделяют следующие отделы межжелудочковой перегородки: входной, мышечный и выходной. Уже в 20 недель у плода на УЗИ можно визуализировать данное анатомическое образование. В норме отверстий в перегородке не бывает, если же таковые имеются, врачи диагностируют врождённый порок — дефект МЖП. При дефектах данной структуры происходит смешение крови, идущей по правым камерам в лёгкие, и крови, богатой кислородом из левых сердечных отделов.

Из-за этого не происходит нормального кровоснабжения органов и клеток, развивается сердечная патология, прочие осложнения, что может приводить к летальному исходу. В зависимости от размеров отверстия, выделяют дефекты большие, средние, малые, также дефекты классифицируют по расположению. Маленькие дефекты могут самопроизвольно закрыться после рождения или в детском возрасте, другие дефекты опасны развитием осложнений — легочной гипертензии, недостаточностью кровообращения, аритмиями. Они требуют оперативного вмешательства.

Помимо важнейшей сократительной функции, сердечная мышца осуществляет еще следующие:

  1. Автоматия. В миокарде находятся особые клетки, которые способны генерировать импульс самостоятельно, независимо ни от каких-либо других органов и систем. Данные клетки расположены скученно и образуют специальные узлы автоматизма. Самый главный узел — синусно-предсердный, он обеспечивает работу нижележащих узлов и задаёт ритм и темп сердечным сокращениям.
  2. Проводимость. В норме в сердечной мышце по специальным волокном проводится возбуждение от вышележащих отделов к нижележащим. Если проводящая система «барахлит», то возникают блокады или другие нарушения ритма.
  3. Возбудимость. Данная функция характеризует способность сердечных клеток реагировать на источник возбуждения — раздражитель. Представляя собой единую сеть за счёт тесной связи друг с другом вставочными дисками, клетки сердца моментально улавливают раздражитель и переходят в возбуждённое состояние.

Описывать важность сократительной функции сердечного «мотора» нет смысла, её важность понятно и ребёнку: пока бьётся человеческое сердце, продолжается жизнь. И данный процесс невозможен, если сердечная мышца не будет работать слаженно и чётко. В норме вначале сокращаются верхние камеры сердца, а затем желудочки. Во время сокращения желудочков происходит изгнание крови в важнейшие сосуды организма, и обеспечивает силу изгнания именно желудочковый миокард. Сокращение предсердий также обеспечивают кардиомиоциты, входящие в стенку данных сердечных отделов.

Главная мышца сердца, увы, подвержена болезням. Когда происходит воспаление сердечной мышцы, врачи ставят диагноз «миокардит». Причиной воспаления может стать бактериальная или вирусная инфекция. Если речь идёт о невоспалительных нарушениях преимущественно обменного характера, то может развиться дистрофия миокарда. Еще один медицинский термин, свидетельствующий о болезни сердечной мышцы — кардиомиопатия. Причины данного состояния могут быть разные, но всё чаще встречаются кардиомиопатии от злоупотребления алкоголем.

Одышка, тахикардия, боли в груди, слабость — данные симптомы свидетельствуют о том, что мышце сердца тяжело справляться со своими функциями и она требует обследования. Главнейшими методами обследования являются электрокардиограмма, ЭхоКГ, рентгенография, холтеровское мониторирование, допплерография, ЭФИ, ангиография, КТ и МРТ. Не стоит списывать со счетов и аускультацию, посредством которой врач может предположить ту или иную патологию миокарда. Каждый метод уникален и взаимодополняет друг друга.

Главное провести необходимое обследование на начальной стадии заболевания, когда сердечной мышце еще можно помочь и восстановить её структуру и функции без последствий для здоровья человека.

источник

Сердце является самой важной мышцей в организме человека. Оно работает постоянно, без перерывов и выходных, а значит и изнашивается быстрее других органов. Именно поэтому заболевания сердечно-сосудистой системы лидируют среди других болезней. К сожалению, многие из нас не берегут свое сердце, и спохватываются только тогда, когда оно начнет давать сбой. Давайте узнаем, как устроено наше сердце, как и за счет чего оно работает и почему считается уникальным.

Сердце имеет конусообразную форму и расположено в грудной полости. Принято считать, что оно находится слева, но это лишь отчасти правда. В левой части грудной полости расположены две трети сердца, а одна треть в ее центре и немного справа.

Сердце человека состоит из четырех камер – правое предсердие, правый желудочек, левое предсердие и левый желудочек.

Правая половина сердца из верхней полой вены получает кровь, бедную кислородом, и дальше выталкивает ее в легочную артерию. В легких венозная кровь насыщается кислородом и превращается в артериальную. Далее эта кровь из легких возвращается в левое предсердие, переходит в левый желудочек и выталкивается в аорту.

Таким образом, артериальная, богатая кислородом кровь разносится по всему телу, питает органы и ткани, превращается в венозную и опять по кровеносным сосудам попадает в правое предсердие. Процесс этот непрерывен и является основой нашей жизнедеятельности.

Внутри сердца есть 4 клапана. Их задача – пропускать кровь в одном направлении. Клапан состоит из 2-3 прочных лоскутов ткани, которые называют створками. Работа клапана зависит от уровня давления в камерах сердца.

Между правым предсердием и желудочком расположен трехстворчатый клапан, а между левым предсердием и желудочком — митральный (двухстворчатый). Эти клапаны контролируют переход крови из предсердий в желудочки. Есть также аортальный и легочной клапаны, которые отграничивают левое предсердие от аорты и правый желудочек от легочной артерии.

Таким образом, главная функция клапанов – герметизация камер сердца и обеспечение движения крови строго в одном направлении – из предсердий в желудочки, по кровеносным сосудам к сердцу, и из сердца в кровеносные сосуды.

Стенка сердца состоит из трех слоев – эндокард миокард и перикард.

Эндокард — самый тонкий слой, который выстилает сердце изнутри. Он гладкий и служит для беспрепятственного прохождения крови.

Миокард – это сердечная мышца, толщина которой у здорового человека в среднем равна 1 см. Строение и механизм работы миокарда и скелетных мышц практически одинаковы. Уникальность сердечной мышцы заключается в том, что ее ритмичные сокращения и расслабления непрерывны, и не подчиняются нашему сознанию. Никто не может приказать своему сердцу работать быстрее или медленнее.

Перикард представляет собой тонкую и прочную оболочку, которая покрывает сердце наподобие сумки. Между перикардом и миокардом находится немного жидкости, задача которой свести к минимуму трение этих структур при сокращениях сердца.

Читайте также:  Таблица в организме должно быть жира воды мышц

Работа сердца – очень энергозаратный процесс, поэтому оно нуждается в кислороде и питательных веществах больше, чем другие органы. В связи с этим, сердце хорошо снабжается кровью, в нем в 2 раза больше капилляров, чем в скелетной мышце. При этом, 20% артериальной крови, которую вытолкнуло сердце, идет на его нужды. Есть два крупных кровеносных сосуда – правая и левая венечные артерии, по которым кровь, богатая кислородом и питательными веществами поступает к сердцу. Они оплетают сердце, как венец, разветвляются, образуя более мелкие артерии, а затем капилляры. Отдав полезные вещества и микроэлементы, кровь покидает сердце по трем венам.

Сердце выполняет насосную функцию, постоянно перекачивая кровь в артерии. При чем делает оно это не хаотично, а упорядоченно, и есть определенный ритм сердечных сокращений и расслаблений. Субъективно мы это ощущаем, как биение сердца.

Сердце работает циклично, и в этом цикле есть две фазы – систола (сокращение) и диастола (расслабление). Во время систолы кровь выталкивается из сердца, а во время диастолы оно вновь заполняется кровью. Один сердечный цикл длится меньше 1 секунды. Соответственно, у здорового человека в состоянии покоя происходит 60-80 циклов в минуту.

Систола длится 0,4 секунды. Начинается эта фаза с сокращения предсердий. При этом открываются трехстворчатый и митральный клапаны, и кровь из них поступает в желудочки. Затем происходит сокращение желудочков, на этом этапе трехстворчатый и митральный клапаны закрываются, а легочной и аортальный клапан открываются, что позволяет крови покинуть сердце и выйти в кровеносные сосуды. Сокращение желудочков сменяется их расслаблением и наступает фаза диастолы , которая длится 0,4 секунды. Легочной и аортальный клапаны при этом закрываются, что не позволяет крови вернуться в желудочки. Давление крови в предсердиях растет, открываются трехстворчатый и митральный клапаны, что позволяет крови выйти в желудочки. После диастолы опять происходит сокращение предсердий, и цикл повторяется.

Таким образом, через каждые 0,8-1 секунду у нас начинается новый сердечный цикл:

Длительность сердечного цикла зависит от разных параметров – физической нагрузки, состояния здоровья, нервного напряжения, возраста, комплекции и массы тела. При физической нагрузке, например, сердце начинает биться чаще, а значит и длительность сердечного цикла сокращается.

Удивительной особенностью сердца является его автоматизм – способность сердца ритмически сокращаться без внешних раздражителей, под влиянием импульсов, которые возникают в нем самом. В правом предсердии есть специальная структура, которая называется синусно-предсердным узлом. Это главный центр зарождения биоэлектрических импульсов.

Клетки синусно-предсердного узла посылают импульсы соседним мышечным клеткам и проводящим пучкам, благодаря чему импульс моментально распространяется на левое предсердие, а затем и на желудочки. Биоэлектрические импульсы вызывают ритмичные сокращения предсердий и желудочков.

Интересно, что биоэлектрические сигналы, которые создает автоматически работающее сердце, проводятся по всему телу. Их можно зарегистрировать от кожи рук и ног и от поверхности грудной клетке. Ученые научились улавливать эти электрические сигналы и фиксировать их в виде графической записи. Этот диагностический метод хорошо известен и называется электрокардиограммой.

Автоматизм сердца подтверждается в ряде исследований – оно может биться вне организма, в искусственно созданной питательной среде.

Работу сердца регулируют две системы – нервная и гуморальная.

Регуляция работы сердца осуществляется с помощью автономной (вегетативной) нервной системы. Влияние симпатического и парасимпатического отделов нервной системы происходит незаметно для нас и не зависит от нашего сознания. Центр симпатической нервной системы находится в спинном мозге, откуда идут импульсы к миокарду. За счет этого увеличивается сила и частота сердечных сокращений, ускорение проведения возбуждения в сердечной мышце и повышение возбудимости в желудочках.

Центр парасимпатической нервной системы находится в продолговатом мозге. Ее действие на сердце противоположно эффектам симпатической нервной системы – уменьшение силы и частоты сердечных сокращений, замедление проведения импульса в сердечной мышце и снижение возбудимости желудочков.

Также сердечная деятельность регулируется посредством рефлексов. В правом предсердии и в кровеносных сосудах имеются рецепторы, которые реагируют на изменение давления крови. На эти раздражители действует нервная система, увеличивая и уменьшая силу и частоту сердечных сокращений.

Гуморальная регуляция – это координация работы сердца, которая осуществляется через жидкие среды организма (кровь, лимфу, межтканевую жидкость). В крови находятся гормоны и биологически активные вещества, концентрация которых влияет на работу сердца. Стимулирующим эффектом обладают: адреналин, норадреналин, кортизол, тироксин, ангиотензин, возопрессин, инсулин, глюкагон, ионы кальция. Подавляют работу сердца: ацетилхолин, аденозин, гистамин, брадикинин, недостаток ионов натрия и калия.

Также на сердечную деятельность влияет уровень кислорода и углекислого газа в крови. Недостаток кислорода и избыток углекислого газа угнетают работу миокарда.

Это достаточно упрощенное описание факторов и механизмов регуляции, которые так или иначе влияют на работу нашего сердца. Субъективно мы можем почувствовать разницу силы и количества сердцебиений в состоянии покоя и при физической работе, или при эмоциональном возбуждении. Сильные эмоции, будь то радость, гнев, страх, переживания (не имеет значения) вызывают учащение и усиление сокращений сердца, а значит и увеличивают его нагрузку.

И напоследок, приведем несколько интересных фактов о нашем сердце.

  • Сердце – небольшой, но очень сильный орган. При средней массе 250-280 грамм, оно перекачивает от 2 до 7 литров крови в час. Это зависит от физических нагрузок и массы тела человека. Сердце тучных людей трудится в 2-3 раза больше, чем у людей с нормальным весом. Жировая ткань имеет много кровеносных сосудов, и нуждается в кислороде, что заставляет сердце работать интенсивнее. Именно поэтому кардиологи рекомендуют держать себя в форме и не переедать.
  • Сердце перекачивает около 10 тонн крови в сутки, 4000 тонн в год и около 300 000 тонн за всю жизнь. Только представьте себе этот объем!
  • Сердце – самый восприимчивый орган к действию ядов и токсинов, в том числе к алкоголю и наркотикам. В первую очередь страдают клапаны и сердечная мышца. Кокаин влияет на электрическую активность сердца и его прием может стать причиной инфаркта и инсульта даже у совершенно здоровых людей
  • За 65 лет жизни сердце сокращается 2,5 миллиарда раз. Это самый неутомимый орган человеческого организма.
  • Стук сердца, который мы ощущаем, связан с закрытием клапанов
  • В состоянии покоя нужно всего 6 секунд, чтобы кровь дошла от сердца к легким и вернулась обратно, 8 секунд – от сердца к мозгу, 16 секунд для кровоснабжения пальцев конечностей и обратно.
  • Для работы сердцу необходимо большое количество энергии. В это сложно поверить, но за сутки оно вырабатывает в среднем количество энергии достаточное, чтобы легковой автомобиль проехал 32 км. За жизнь он мог бы доехать до Луны и обратно.

источник

РЕГУЛЯЦИЯ РАБОТЫ СЕРДЦА. Центральная нервная система вместе с рядом гуморальных факторов обеспечивает регулирующее влияние на работу сердца

Центральная нервная система вместе с рядом гуморальных факторов обеспечивает регулирующее влияние на работу сердца, приспосабливая ее к конкретным условиям, в которых находится животное. Различают интракардиальную регуляцию, осуществляемую за счет рефлекторных дуг, замыкающихся в интрамуральных (внутрисердечных) ганглиях миокарда и экстракардиальную регуляцию, обеспечиваемую импульсами поступающими из ЦНС к сердцу по симпатическим и парасимпатическим нервам (рис. 12.).

Рис. 12. Симпатическая и парасимпатическая иннервация сердца.

Сц- сердце; К- кора мозга; Гт- гипоталамус; Гф- гипофиз; Цсд- центр сердечной деятельности; Пм- продолговатый мозг; СГ- симпатический ганглий; См – спинной мозг; Тh- грудной отдел; 1- блуждающий нерв; 2- симпатические нервы; звездчатый ганглий (узел).

В продолговатом мозге расположены нейроны, аксоны которых в составе блуждающих нервов идут в интрамуральные ганглии сердца, где располагаются вторые нейроны. Отростки последних нейронов иннервируют узлы проводящей системы и миокард, главным образом, предсердий. Симпатическая иннервация берет начало в боковых рогах 1—5 грудных сегментов спинного мозга. Отростки этих нейронов доходят до шейного и звездчатого ганглиев, от которых выходит постганглионарные симпатические волокна, иннервирующие проводящую систему и миокард желудочков.

Влияние блуждающих нервов на работу сердца впервые было установлено братьями Вебер (1845). Импульсы, поступающие к сердцу по волокнам блуждающих нервов, вызывают замедление частоты сердечных сокращений (отрицательный хронотропный эффект) до полной их остановки, что зависит от силы и частоты стимуляции блуждающего нерва, а также от степени угнетения синоатриального узла. В случае длительного раздражения блуждающего нерва остановившееся сердце, снова начинает сокращаться хотя и в несколько редком ритме. Это явление называют ускользанием сердца из-под влияния блуждающего нерва. По поводу возникновения этого явления существует много различных мнений. Наряду с хронотропным влиянием блуждающие нервы уменьшают и силу сердечных сокращений (отрицательный инотропный эффект), снижают возбудимость миокарда (отрицательный батмотропный эффект) и скорость проведения по сердцу возбуждения (отрицательный дромотропный эффект).

Влияние симпатических нервов изучалось Бецольдом (1863), братьями Цион (1866), И.П. Павловым. Было установлено, что в противоположность блуждающим симпатические нервы вызывают все четыре положительных эффекта.

Благодаря этой двойной иннервации (рис.13.) обеспечивается приспособляемость работы сердца к потребностям организма, что достигается путем регуляции разной степени влияния на сердце этих нервов.

Рис. 13. Влияние блуждающего нерва на работу сердца:

1- действие блуждающего нерва; 2- действие симпатического нерва.

Некоторые исследователи считают, что при срочно необходимом усилении работы сердца проявляется вначале ослабление вагусного влияния и только несколько позже присоединится активирующее действие симпатических нервов.

И.П. Павлов (1887) при раздражении отдельных веточек, проходящих в симпатических нервах, наблюдал увеличение силы сердечных сокращений без заметного повышения их частоты. Если же раздражать веточки, проходящие в стволе блуждающих нервов, то сила сокращений сердца будет меньшей. И.П. Павлов считал, что эти нервные волокна оказывают влияние на метаболические процессы в миокарде. В одних случаях они усиливаются, в других – снижаются. Эти нервные волокна были названы И.П. Павловым трофическими.

На работу сердца влияют и разнообразные рефлекторные реакции, вызываемые раздражения от многочисленных экстеро– и интерорецепторов. Раздражение проприорецепторов сокращающимися мышцами рефлекторно стимулирует сердечную деятельность и движение крови по сосудистой системе. Это дало основание для названия мышц дополнительными сердцами. Работа сердца тормозится при раздражении рецепторов ряда полых органов. Например, известный в физиологии вагональный рефлекс Гольца, вызывающий резкое замедление работы сердца при раздражении рецепторов желудка, кишечника, брюшины, что происходит не только в эксперименте, но и при ряде патологических процессов в этих органах.

Среди рефлекторных влияний на сердце важное значение имеют импульсы, возникающие в рецепторах, расположенных в дуге аорты и каротидном синусе (рис. 14.). В этих зонах располагаются баро– и хеморецепторы. Участки этих сосудистых зон называются рефлексогенными зонами.

Рис.14. Синокаротидная и аортальная рефлексогенные зоны:

1- аорта; 2- общие сонные артерии; 3- каротидный синус; 4- синусный нерв; 5- аортальный нерв; 6- каротидное тельце; 7- блуждающий нерв; 8- языкоглоточный нерв; 9- внутренняя сонная артерия.

В дуге аорты располагается первая рефлексогенная зона нерва депрессора (аортальный нерв), раздражение рецепторов которого ведет к значительному снижению величины кровяного давления (рис. 15.).

Вторая зона – в каротидном синусе, где находятся рецепторы синокаротидного нерва (нерв Геринга), идущего в продолговатый мозг в составе языкоглоточного нерва.

Раздражение барорецепторов (механорецепторов) повышением давления крови и растяжением стенок этих сосудистых зон увеличивает тонус блуждающего нерва, вследствие чего работа сердца рефлекторно замедляется и кровяное давление снижается до нормальной величины.

Рис. 15. Рефлекторное падение кровяного давления под влиянием раздражения аортального нерва.

Раздражение хеморецепторов этих зон, увеличенным содержанием в крови угольной кислоты, концентрации водородных ионов, недостатком кислорода и т.д. ведет к повышению тонуса симпатических нервов, а следовательно, к усилению работы сердца, сужению просвета сосудов и как результат – к повышению давления.

В устье полых вен располагается третья рефлексогенная зона, раздражение барорецепторов которой большим количеством крови повышает влияние симпатических нервов, что приводит к увеличению частоты и силы сердечных сокращений, кровь в большом количестве перекачивается из вен в артерии, в результате чего давление в полых венах снижается до нормальной величины. Это явление носит название рефлекса Бейнбриджа.

Работа сердца находится и под влиянием условнорефлекторных импульсов, идущих от центров гипоталамуса и других структур головного мозга, в том числе его коры. Примером этого служат факты изменения сердечной деятельности под влиянием сказанного слова, разнообразных эмоциональных факторов, о чем красноречиво сказал И.П. Павлов: «сердце прыгает от радости, бьется любовью, сердце колотится от страха, сжалось от жалости. Условнорефлекторные изменения работы сердца наблюдаются при предстартовых состояниях человека и у животных при различных манипуляциях, связанных с подготовкой к работе. Возможна выработка и условных сердечных рефлексов на посторонний, индифферентный раздражитель.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Да какие ж вы математики, если запаролиться нормально не можете. 8505 — | 7373 — или читать все.

Различные факторы влияют на свойства сердечной мышцы (возбудимость, проводимость, сократимость, автоматизм, тонус) и, следовательно, на основные параметры деятельности сердца — частоту и силу сокращений.

Влияния на частоту сердечных сокращений называются хронотропными, на силу сокращений — инотропными, на возбудимость — батмотропными, на проводимость — дромотропными, на тонус сердечной мышцы — тонотропными влияниями. Влияния, вызывающие увеличение этих показателей называются положительными, а уменьшение — отрицательными.

Регуляция деятельности сердца. Принято различать несколько форм регуляции деятельности сердца: авторегуляцию (представленную двумя ее видами — миогенным и нейрогенным) и экстракардиальную регуляцию (нервную, гуморальную, рефлекторную).

Миогенная авторегуляция включает в себя гетерометрический и гомеометрический механизмы. Гетерометрический механизм опосредован внутриклеточными взаимодействиями и связан с изменением взаиморасположения актиновых и миозиновых нитей в миофибриллах кардиомиоцитов при растяжении миокарда кровью, поступающей в полости сердца. Растяжение миокардиоцитов приводит к увеличению количества миозиновых мостиков, способных соединить миозиновые и актиновые нити во время сокращения. Чем более растянут кардиомиоцит, тем на большую величину он может укоротиться при сокращении, и тем более сильным будет это сокращение. Этот вид регуляции был установлен на сердечно-легочном препарате и сформулирован в виде «закона сердца» или закона Франка-Старлинга. Согласно этому, закону, чем больше миокард растянут во время диастолы, тем больше сила последующего сокращения (систолы). Предсистолическое растяжение миокарда обеспечивается дополнительным объемом крови, нагнетаемым в желудочки во время систолы предсердии. При утомлении сердечной мышцы и длительной нагрузки (например, при гипертонии) этот закон проявляется только в том случае, если сердечная мышца растягивается значительно больше, чем обычно. Однако, величина минутного объема сердца и в этих состояниях длительное время удерживается на нормальном уровне. При дальнейшем нарастании утомления или нагрузки этот показатель уменьшается.

Гомеометрическая авторегуляция сердца связана с определенными межклеточными отношениями и не зависит от пред систолического его растяжения. Большую роль в гомеометрической регуляции играют вставочные диски — нексусы, через которые миокардиоциты обмениваются ионами и информауией. Реализуется данная форма регуляции в виде «эффекта Анрепа» — увеличение силы сердечного сокращения при возрастании сопротивления в магистральных сосудах.

Другим проявлением гомеометрической регуляции является так называемая ритмоинотропная зависимость: изменение силы сердечных сокращений при изменении частоты. Это явление обусловлено изменением длительности потенциала действия миокардиоцитов и, следовательно, изменением количества экстрацеллюлярного кальция, входящего в миокардиоцит при развитии возбуждения.

Нейрогенная авторегуляция сердца в своей основе имеет периферические внутрисердечные рефлексы. Рефлексогенные зоны (скопление рецепторов, с которых начинаются определенные рефлексы) сердца условно делятся на контролирующие «вход» (приток крови к сердцу), «выход» (отток крови от сердца) и кровоснабжение самой сердечной мышцы (расположены в устьях коронарных сосудов). При любом изменении параметров этих процессов возникают местные рефлексы, направленные на ликвидацию отклонений гемодинамики. Например, при увеличении венозного притока и увеличении давления в устьях полых вен и в правом предсердии возникает рефлекс Бейнбриджа заключающийся в увеличении частоты сокращений сердца.

Экстракардиальная регуляция. Гуморальная регуляция. Сердечная мышца обладает высокой чувствительностью к составу крови, протекающей через ее сосуды и полости сердца. К гуморальным факторам, которые оказывают влияние на функциональное состояние сердца, относятся:

• гормоны (адреналин, тироксин и др.);

• ионы (калия, кальция, натрия и др.);

• продукты метаболизма (молочная и угольная кислоты и др.);

Адреналин оказывает на сердечную мышцу положительный хроно- и инотропный эффект. Его взаимодействие с бета-адренорецепторами кардиомиоцитов приводит к активации внутриклеточного фермента аденилатциклазы, которая ускоряет образование циклического АМФ, необходимого для превращения неактивной фосфарилазы в активную. Последняя обеспечивает снабжение миокарда энергией путем расщепления внутриклеточного гликогена с образованием глюкозы. Такое же влияние на сердце (и тем же путем) оказывает глюкагон.

Гормон щитовидной железы — тироксин — обладает ярко выраженным положительным хронотропным эффектом и повышает чувствительность сердца к симпатическим воздействиям.

Положительный инотропный эффект на сердце оказывают кортикостероиды, ангиотензин, серотонин.

Избыток ионов калия оказывает на сердечную деятельность отрицательный ино-, хроно-, батмо- и дромотропный эффекты. Повышение концентрации калия в наружной среде приводит к снижению величины потенциала покоя (вследствие уменьшения градиента концентрации калия), возбудимости, проводимости и длительности ПД.

При значительном увеличении концентрации калия сино-атриальный узел перестает функционировать как водитель ритма, и происходит остановка сердца в фазе диастолы. Снижение концентрации ионов калия приводит к повышению возбудимости центров автоматии, что может сопровождаться, прежде всего, нарушениями ритма сердечных сокращений.

Умеренный избыток ионов кальция в крови оказывает положительный инотропный эффект. Это связано с тем, что ионы кальция активируют фосфарилазу и обеспечивают сопряжение возбуждения и сокращения. При значительном избытке ионов кальция происходит остановка сердца в фазе систолы, т.к. кальциевый насос миокардиоцитов не успевает выкачивать избыток ионов кальция из межфибриллярного ретикулума и разобщение нитей актина, и миозина, следовательно, и расслабления не происходит.

Нервная регуляция. Нервные влияния на деятельность сердца осуществляются импульсами, которые поступают к нему по блуждающему и симпатическим нервам. Тела первых нейронов, образующих блуждающие нервы, расположены в продолговатом мозге. Их аксоны, образующие преганглионарные волокна, идут в интрамуральные ганглии, расположенные в стенке сердца. Здесь находятся вторые нейроны, аксоны которых образуют постганглионарные волокна и иннервируют сино-атриальный узел, мышечные волокна предсердий, атрио-вентрикулярный узел и начальную часть проводящей системы желудочков.

Первые нейроны, образующие симпатические нервы, иннервирующие сердце, расположены в боковых рогах пяти верхних грудных Сегментов спинного мозга. Их аксоны (преганглионарные волокна) заканчиваются в шейных и верхних грудных симпатических узлах, в которых находятся вторые нейроны, отростки которых (постганглионарные волокна) идут к сердцу. Большая их часть отходит от звездчатого ганглия. Симпатическая иннервация, в отличие от парасимпатической, более равномерно распределена по всем отделам сердца, включая миокард желудочков. Братьями Э. и Г. Вебер впервые было показано, что раздражение блуждающих нервов оказывает на деятельность сердца отрицатель-вый ино-, хроно-, батмо- и дромотропный эффекты. Микроэлектродные отведения потенциалов от мышечных волокон предсердий показали, что при сильном раздражении блуждающего нерва происходит увеличение мембранного потенциала (гиперполяризация), которое обусловлено повышением проницаемости мембраны для ионов калия, что препятствует развитию деполяризации. Гиперполяризация пейсмекерных клеток сино-атриального узла снижает их возбудимость, что приводит вначале к запаздыванию развития МДД в сино-атриальном узле, а затем и полному ее устранению, что приводит сначала к замедлению сердечного ритма, а затем к остановке сердца. Инотропный эффект связан с укорочением ПД миокарда предсердий и желудочков. Дромотропный — связан с уменьшением атрио-вентрикулярной проводимости.

Читайте также:  Тестостерон для мышц и либидо

Однако, слабое раздражение блуждающего нерва может вызывать симпатический эффект. Это объясняется тем, что в сердечном интрамуральном ганглии, кроме холинэргических эфферентных нейронов, находятся адренэргические, которые, обладая более высокой возбудимостью, формируют симпатические эффекты.

Вместе с тем, при одной и той же силе раздражения эффект блуждающего нерва может иногда сопровождаться противоположными реакциями. Это связано со степенью наполнения кровью полостей сердца и сердечных сосудов, т. е. с активностью собственного (внутрисердечного) рефлекторного аппарата. При значительном наполнении и переполнении сосудов и полостей сердца, раздражение блуждающего нерва сопровождается тормозными (отрицательными) реакциями, а при слабом наполнении сердца и, следовательно, слабом возбуждении механорецепторов внутрисердечной нервной сети — стимулирующими (положительными).

Исследованиями И.Ф. Циона впервые было показано, что раздражение симпатических нервов оказывает на сердечную деятельность положительные хроно-, ино-, батмо- и тромотропныи эффекты. Среди симпатических нервов, идущих к сердцу, И.П. Павлов обнаружил нервные веточки, раздражение которых вызывает только положительный инотропный эффект. Они были названы усиливающим нервом сердца, который действует на сердце путем стимуляции в нем обмена веществ, т.е. трофики.

Раздражение симпатических нервов вызывает:

• повышение проницаемости мембраны для ионов кальция, что приводит к повышению степени сопряжения возбуждения и сокращения миокарда;

• ускорение спонтанной деполяризации клеток водителей ритма сердца, что приводит к учащению сердечных сокращений;

• ускорение проведения возбуждения в атрио-вентрикулярном узле, что уменьшает интервал между возбуждением предсердий и желудочков.

• удлинение ПД и увеличение его амплитуды, в результате чего больше экзогенного кальция поступает в саркоплазму и сила мышечного сокращения возрастает.

При раздражении ваго-симпатического ствола раньше наступает парасимпатический эффект, а затем — симпатический. Это связано с тем, что постганглионарные волокна блуждающего нерва (от интрамуральных ганглиев) очень короткие и обладают достаточно высокой скоростью проведения возбуждения. У симпатического нерва постганглионарные волокна длинные, скорость проведения возбуждения меньше, поэтому эффект от его раздражения запаздывает. Однако, действие блуждающего нерва кратковременное, т. к. его медиатор — ацетилхолин — быстро разрушается ферментом холинэстеразой. Медиатор симпатических волокон — норадреналин — разрушается значительно медленнее, чем ацетилхолин, и он действует дольше, поэтому после прекращения раздражения симпатических нервов некоторое время сохраняется учащение и усиление сердечной деятельности.

Из сравнения влияний симпатического и парасимпатического нервов на деятельность сердца видно, что они являются нервами-антагонистами, т, е. оказывают противоположные эффекты. Однако, при определенных условиях раздражения парасимпатического нерва можно получить симпатикоподобный эффект, а симпатического — вагусный. В условиях деятельности целостного организма можно говорить только об их относительном антагонизме, так как они совместно обеспечивают наилучшее, адекватное функционирование сердца в различных функциональных системах. Следовательно, их влияния не антагонистические, а скорее содружественные, т. е. они функционируют как нервы-синергисты.

Рефлекторные влияния на деятельность сердца могут возникать при раздражении различных интеро- и экстерорецепторов. Но особое значение в изменении деятельности сердца имеют рефлексы, возникающие с рецепторов, расположенных в сосудистой системе, получивших название сосудистых рефлексогенных зон. Они расположены в дуге аорты, в каротидном синусе (область разветвления общей сонной артерии) и в других участках сосудистой системы. В этих рефлексогенных зонах находится множество механо, баро-, хеморецеторов, которые реагируют на различные изменения гемодинамики и состав крови.

Рефлекторные влияния с механорецепторов каротидного синуса и дуги аорты особенно важны при повышении кровяного давления. Последнее приводит к возбуждению этих рецепторов и, как следствие, повышению тонуса блуждающего нерва, в результате чего возникает торможение деятельности сердца (отрицательный хроно- и инотропный эффекты). При этом сердце меньше перекачивает крови из венозной системы в артериальную и давление в аорте и крупных сосудах снижается.

Интенсивное раздражение интерорецепторов может рефлекторно привести к изменению деятельности сердца, вызывая либо учащение и усиление, либо ослабление и урежение сердечных сокращений. Так, например, раздражение рецепторов, брюшины (поколачивание пинцетом но животу лягушки) может привести к урежению сердечной деятельности и даже к его остановке (рефлекс Гольца). У человека кратковременная остановка сердечной деятельности также может наступить при ударе в область живота. При этом афферентные импульсы по чревным нервам достигают спинного мозга, а затем ядер блуждающих нервов, от которых по эфферентным волокнам вагуса импульсы направляются к сердцу, вызывая его остановку. К вагусным рефлексам относится и глазо-сердечный рефлекс (рефлекс Данини-Ашнера) — урежение сердечной деятельности при легком надавливании на глазные яблоки.

Корковая регуляция деятельности сердца. Изменение сердечной деятельности могут вызвать различные эмоции или упоминание о факторах, их вызывающих, что свидетельствует об участии коры больших полушарий мозга в регуляции деятельности сердца.

Наиболее убедительные данные о наличии корковой регуляции сердечной деятельности получены методом условных рефлексов. Условно-рефлекторные реакции лежат в основе предстартовых состояний спортсменов, сопровождающихся такими же изменениями деятельности сердца, как и во время соревнований.

Кора больших полушарий головного мозга обеспечивает приспособительные реакции организма не только к настоящим, но и к будущим событиям. Условно-рефлекторные сигналы, предвещающие наступление этих событий, могут вызвать изменения сердечной деятельности и всей сердечно-сосудистой системы в той мере, в какой это необходимо, чтобы обеспечить предстоящую деятельность организма.

Не нашли то, что искали? Воспользуйтесь поиском:

Механизмами регуляции сердечной деятельности являются:

1. внесердечные механизмы — нервный, гуморальный;

2. внутрисердечныемеханизмы (ауторегуляция, т.е. саморегуляция): внутриклеточные регуляторные механизмы, гетерометрическая саморегуляция, гомеометрическая саморегуляция, внутрисердечные периферические рефлексы.

Внутрисердечные механизмы (саморегуляция деятельности сердца). Этомеханизмы осуществляемые либо с самого сердца, либо через вегетативную нервную систему.

Внутриклеточный механизм саморегуляции состоит в следующем: если сердечная мышца постоянно испытывает необходимость в повышенной активности, то происходит гипертрофия миокарда. Это результат проявления внутриклеточных механизмов, реагирующих на нагрузку синтезом дополнительных сократительных белков.

Гетерометрический механизм,т.е. связан с изменением длины саркомеров кардиомиоцитов.При увеличении кровенаполнения сердца в диастолу, а следовательно при увеличении растяжения мышцы сердца, сила сердечных сокращений возрастает – закон Старлинга, т.е. чем больше конечно-диастолический объём желудочков, тем больше величина систолического выброса. Закон Ф.-С. демонстрирует возможности рационального использования энергии сердцем – при оптимальной длине саркомера за одно и то же количество расходуемой энергии можно совершить больше работы.

Гомеометрический механизм (феномен Анрека, эффект Боудича).В этом случае сила сердечных сокращений зависит от ЧСС и от давления в аорте и легочном стволе. Феномен Анрека заключается в том, что при повышении давления в аорте или легочном стволе автоматически увеличивается сила сердечных сокращений (желудочков). Эффект (лестница) Боудича – это зависимость силы сокращения от частоты сердечных сокращений, т.е. чем больше ЧСС до определённого предела, тем выше сила сокращения сердечной мышцы. И наоборот, чем реже ЧСС, тем меньше сила.

Нервная регуляция деятельности сердца. Влияние нервной системы на деятельность сердца осуществляется за счет блуждающих (n. vagus) и симпатических нервов. Эти нер­вы относятся к вегетативной нервной системе. Блужда­ющие нервы идут к сердцу от ядер, расположенных в продолговатом мозге на дне IV желудочка. Симпатиче­ские нервы подходят к сердцу от ядер, локализованных в боковых рогах спинного мозга (I—V грудные сегмен­ты). Блуждающие и симпатические нервы оканчиваются в синоатриальном и атриовентрикулярном узлах, также в мускулатуре сердца.

Впервые действие блуждающих нервов на сердце показали братья Веберы в 1845 г. Слабые раздражения блуждающих нервов при­водят к замедлению ритма сердца (отрицательный хронотропный эффект), уменьшению амплитуды сокращений (отрицательный инотропный эффект), понижению возбудимости мышцы сердца (отрицательный батмопропный эффект), ухудшению проводимости сердца (отрицательный дромотропный эффект). При сильном раздражении блуждающего нерва может произойти кратковременная остановка сердечных сокращений. При длительном раздражении блуждающего нерва прекратившиеся вначале сокращения сердца возобновляются, несмотря на продолжающееся раздражение. Это явление, называемое «ускользанием» сердца из-под влияния блуждающего нерва, имеет большое биологическое значение благодаря ему обеспечивается возможность сохранения жизни при длительном раздражении блуждающего нерва, которое могло бы вызвать полную остановку сердца и гибель организма.

При раздражении симпатических нервов происходит учащение ритма сердца и увеличива­ется сила сердечных сокращений, повышается возбу­димость и тонус сердечной мышцы, а также скорость проведения возбуждения, т.е. положительные хронотропный, инотропный, батмопропный и дромотропный эффекты.

Впервые действие симпатических нервов на сердце было изучено в 1867 г. И.Ф.Ционом, а затем в 1887 г. И.П.Павловым связанное с двумя типами симпатических нервных волокон.

И.Ф.Цион описал учащение сердечной деятельности при раздражении симпатических волокон (положительный хронотропный эффект) и назвал эти волокна укорителями сердца nn. accelerantes. И.П.Павлов обнаружил симпатические нервные волокна, вызывающие усиление амплитуды сердечных сокращений (положительный инотропный эффект), и назвал их усилителями сердечной деятельности. Эти волокна являются специально трофическими, т.е. стимулируют процессы обмена веществ в сердечной мышце.

Обширные связи сердца с различными отделами нервной системы (спинной, продолговатый мозг, гипоталамус, кора больших полушарий) создают условия для разнообразных рефлекторных воздействий на деятельность сердца, осу­ществляемых через вегетативную нервную систему.

В стенках сосудов располагаются многочисленные рецепторы, обладающие способностью возбуждаться при изменении величины кровяного давления и химическо­го состава крови. Особенно много рецепторов имеется в области дуги аорты и каротидных синусов. Их еще называют сосудистые рефлексогенные зоны.

Все рефлексы, эфферентным звеном которых является сердце, делятся на несколько групп:кардиокардиальные (возникают с рецепторов сердца); вазокардиальные (возникают с рецепторов сосудистых зон); висцерокардиальные (возникают с рецепторов внутренних органов); условные рефлексы (возникают с нейронов коры головного мозга).

Нервная регуляция сосудистого тонуса.Современные данные свидетельствуют о том, что симпатические нервы для сосудов являются вазоконстрикторами (суживают сосуды). Сосудосуживающее влияние симпатических нервов не распространяется на сосуды головного мозга, легких, сердца и работающих мышц. При возбуждении симпатических нервов сосуды указанных органов и тканей расширяются.

Сосудорасширяющие нервы (вазодилататоры) имеют несколько источников. Они входят в состав некоторых парасимпатических нервов. Также сосудорасширяющие нервные волокна обнаружены в составе симпатических нервов и задних корешков спинного мозга.

Сосудодвигательный центр был открыт в 1871 г. В.Ф. Овсянниковым.Находится в продолговатом мозге и находится в состоянии тонической активности, т. е. длительного постоянного возбуждения. Устранение его влияния вызывает расширение сосудов и падение артериального давления.

Сосудодвигательный центр продолговатого мозга расположен на дне IV желудочка и состоит из двух отделов — прессорного и депрессорного. Раздражение первого вызывает сужение артерий и подъем артериаль­ного давления, а раздражение второго—расширение артерий и падение давления.

Влияния, идущие от сосудосуживающего центра продолговатого мозга, приходят к нервным центрам симпатической части вегетативной нервной системы, расположенным в боковых рогах грудных сегментов спинного мозга, где образуются сосудосуживающие центры, регулирующие тонус сосудов отдельных участков тела.

Кроме сосудодвигательного центра продолговатого и спинного мозга, на состояние сосудов оказывают влияние нервные центры промежуточного мозга и больших полу­шарий.

Рефлекторные изменения тонуса артерий — сосудистые рефлексы — могут быть разделены на две группы: собственные и сопряжен­ные рефлексы. Собственные сосудистые рефлексы вызываются сигналами от рецепторов самих сосудов. Сопряженные сосудистые рефлексы, т. е. рефлексы, возникающие от других системе и органов, проявляются преимущественно повышением артериального давления. Их можно вызвать, например, раздражением поверхности тела. Так, при болевых раздражениях рефлекторно суживаются сосуды, особенно органов брюшной полости, и артери­альное давление повышается. Раздражение кожи холодом также вызывает рефлекторное сужение сосудов, главным образом кожных артериол.

Влияние коры головного мозга на сосудистый тонус. Влияние коры полушарий большого мозга на сосуды было впервые доказано путем раздражения определенных участков коры. Сосудистая реакция на ранее индифферентный раздражитель осуществляется условнорефлекторным путем, т.е. при участии коры больших полушарий. У человека при этом возникают и соответствующие ощущения (холода, тепла или боли), хотя никакого раздражения кожи не было.

Гуморальные влияния на деятельность сердца. Гуморальные влияния на деятельность сердца реали­зуются гормонами, некоторыми электролитами и други­ми высокоактивными веществами, поступающими в кровь и являющимися продуктами жизнедеятельности многих органов и тканей организма.

Ацетилхолин и норадреналин — медиаторы нервной системы — оказывают выраженное влияние на работу сердца. Действие ацетилхолина неотделимо от функций парасимпатических нервов, так как он синтезируется в их окончаниях. Ацетилхолин уменьшает возбудимость сердечной мышцы и силу ее сокращений.

Важное значение для регуляции деятельности сердца имеют катехоламины, к которым относятся норадрена­лин (медиатор) и адреналин (гормон). Катехоламины оказывают на сердце влияние, аналогичное воздействию симпатических нервов. Катехоламины стимулируют обменные процессы в сердце, повышают расход энергии и тем самым увеличивают потребность миокарда в кис­лороде. Адреналин одновременно вызывает расширение коронарных сосудов, что способствует улучшению пита­ния сердца.

В регуляции деятельности сердца особо важную роль играют гормоны коры надпочечников и щитовидной же­лезы. Гормоны коры надпочечников — минералокортикоиды — увеличивают силу сердечных сокращений миокарда. Гормон щитовидной железы — тироксин — повышает обменные процессы в сердце и увеличивает его чувстви­тельность к воздействию симпатических нервов.

Гуморальная регуляция тонуса сосудов. Некоторые гуморальные агенты суживают, а другие расширяют просвет артериальных сосудов. К сосудосуживающим веществам относятся гормоны мозгового вещества надпочечников – адреналин и норадреналин, а также задней доли гипофиза – вазопрессин.

Адреналин и норадреналин суживают артерии и артериолы кожи, органов брюшной полости и легких, а вазопрессин действует преимущественно на артериолы и капилляры.

К числу гуморальных сосудосуживающих факторов относится серотонин, продуцируемый в слизистой оболочке кишечника и некоторых участках головного мозга. Серотонин образуется также при распаде кровяных пластинок. Физиологическое значение серотонина в данном случае состоит в том, что он суживает сосуды и препятствует кровотечению из пораженного участка.

К сосудосуживающим веществам относится ацетилхолин, который образуется в окончаниях парасимпатических нервов и симпатических вазодилятаторов. Он быстро разрушается в крови, поэтому его действие на сосуды в физиологических условиях чисто местное.

Сосудорасширяющим веществом является также гистамин – вещество, образующееся в стенке желудка и кишечника, а также во многих других органах, в частности в коже при ее раздражении и в скелетной мускулатуре во время работы. Гистамин расширяет артериолы и увеличивает кровенаполнение капилляров.

Вопросы для самоконтроля

1. Что относится к системе кровообращения?

2. Перечислите фазы сердечного цикла и укажите их длительность.

3. Какие специфические образования составляют проводящую систему сердца его водители ритма?

4. Какие физиологическими свойствами обладает сердечная мышца?

5. Укажите виды артериального давления?

6. Назовите факторы определяющие уровень артериального давления?

7. Назовите механизмы регуляции сердечной деятельности и сосудистого тонуса?

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Увлечёшься девушкой-вырастут хвосты, займёшься учебой-вырастут рога 9907 — | 7727 — или читать все.

85.95.179.227 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Центральная нервная система постоянно контролирует работу сердца посредством нервных импульсов. Внутри полостей самого сердца и в стенках крупных сосудов расположены нервные окончания — рецепторы, воспринимающие колебания давления в сердце и сосудах. Импульсы от рецепторов вызывают рефлексы, влияющие на работу сердца. Существуют два вида нервных влияний на сердце: одни — тормозящие,т. е. снижающие частоту сокращений сердца, другие — ускоряющие. Импульсы передаются к сердцу по нервным волокнам от нервных центров, расположенных в продолговатом и спинном мозге. Влияния, ослабляющие работу сердца, передаются по парасимпатическим нервам, а усиливающие его работу — по симпатическим.

Например, у человека учащаются сокращения сердца, когда он быстро встает из положения лежа. Дело в том, что переход в вертикальное положение приводит к накоплению крови в нижней части туловища и уменьшает кровенаполнение верхней части, особенно головного мозга. Чтобы восстановить кровоток в верхней части туловища, от рецепторов сосудов поступают импульсы в центральную нервную систему.

Оттуда к сердцу по нервным волокнам передаются импульсы, ускоряющие сокращение сердца. Эти факты — наглядный пример саморегуляции деятельности сердца.

Болевые раздражения также изменяют ритм сердца. Болевые импульсы поступают в центральную нервную систему и вызывают замедление или ускорение сердцебиений.

Мышечная работа всегда сказывается на деятельности сердца. Включение в работу

большой группы мышц по законам рефлекса возбуждает центр, ускоряющий деятельность сердца. Большое влияние на сердце оказывают эмоции. Под воздействием положительных эмоций люди могут совершать колоссальную работу, поднимать тяжести, пробегать большие расстояния. Отрицательные эмоции, наоборот, снижают работоспособность сердца и могут приводить к нарушениям его деятельности.

Гуморальная регуляция тонуса сосудов

Гуморальная регуляция осуществляется веществами системного и местного действия. К веществам системного действия относятся ионы кальция, калия, натрия, гормоны. Ионы кальция вызывают сужение сосудов, ионы калия оказывают расширяющее действие.

Действие гормонов на тонус сосудов:

вазопрессин — повышает тонус гладкомышечных клеток артериол, вызывая сужение сосудов; адреналин оказывает одновременно и суживающее и расширяющее действие, при незначительных концентрациях адреналина происходит расширение кровеносных сосудов, а при высоких — сужение; тироксин — стимулирует энергетические процессы и вызывает сужение кровеносных сосудов; ренин — вырабатывается почками и поступает в кровоток и вызывает сужение сосудов. Метаболиты углекислый газ, пировиноградная кислота, молочная кислота, ионы водорода воздействуют на хеморецепторы сердечно-сосудистой системы, приводя к рефлекторному сужению просвета сосудов.

К веществам местного воздействия относятся: медиаторы симпатической нервной системы — сосудосуживающее действие, парасимпатической ацетилхолин — расширяющее; биологически активные вещества — гистамин расширяет сосуды, а серотонин суживает.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: На стипендию можно купить что-нибудь, но не больше. 9081 — | 7269 — или читать все.

85.95.179.227 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Pro-болезни online © 2020
Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению. Обязательно проконсультируйтесь с вашим лечащим врачом!

источник