Меню Рубрики

Значение скелета и скелетных мышц развитие скелета

Развитие скелетных мышц. В утробной жизни мышечные волокна формируются гетерохронно. Сначала дифференцируются мышцы языка, губ, диафрагмы, межреберные и спинные, в конечностях— сначала мышцы рук, а затем ног, в каждой конечности сначала — проксимальные отделы, а затем дистальные. Мышцы эмбрионов содержат меньше белков и больше воды, до 80%. После рождения рост и развитие разных мышц также происходят неравномерно.

Раньше и больше начинают развиваться те мышцы, которые обеспечивают двигательные функции, имеющие существенное значение для жизни (участвующие в дыхании, сосании, схватывании предметов, необходимых для питания и т. п., т. е. диафрагма, межреберные, мышцы языка, губ, кисти). Кроме того, больше тренируются и развиваются те мышцы, которые участвуют в процессе обучения и воспитания у детей определенных навыков.

Новорожденный имеет все скелетные мышцы, но их вес в 37 раз меньше, чем у взрослого. Рост и формирование скелетных мышц происходит примерно до 20—25 лет, оказывая влияние на рост и формирование скелета. Вес мышц увеличивается с возрастом неравномерно и особенно быстро в период полового созревания.

Вес тела растет с возрастом, главным образом, за счет увеличения веса скелетной мускулатуры.

Средний вес скелетных мышц в процентах к весу тела равен: у новорожденных — 23,3; в 8 лет — 27,2; в 12 лет — 29,4; в 15 лет — 32,6; в 18 лет — 44,2.

К 1 году более развиты мышцы плечевого пояса и рук, чем мышцы таза, бедра и ног. В руке и плечевом поясе, начиная с 2 лет, проксимальные мышцы значительно толще дистальных, поверхностные толще глубоких, функционально активные толще менее активных.

С 2 до 4 лет особенно быстро растут волокна в длиннейшей мышце спины и в большой ягодичной мышце. К 4—б годам развиты мышцы плеча и предплечья, но еще недостаточно — мышцы кистей рук. В раннем детстве мышцы туловища развиваются значительно быстрее мышц рук и ног. Ускорение развития мышц кисти происходит в 6—7 лет, когда ребенок производит легкую работу и начинает приучаться к письму. Развитие сгибателей опережает развитие разгибателей. У сгибателей вес и физиологический поперечник больше, чем у разгибателей. Мышцы пальцев, особенно сгибатели, участвующие в захвате предметов, имеют наибольший вес и физиологический поперечник. По сравнению с ними сгибатели кисти имеют относительно меньший вес и физиологический поперечник.

В первые 8—9 лет жизни значительно возрастает физиологический поперечник мышц, вызывающих движения пальцев. Мышцы лучезапястного и локтевого суставов растут менее интенсивно. К 10 годам поперечник длинного сгибателя большого пальца достигает почти 65% взрослого человека.

Анатомический поперечник плеча с 3 до 16 лет увеличивается у юношей в 2,5—3 раза, у девушек меньше.

В первые годы жизни у детей слабы глубокие мышцы спины, недостаточно развиты и их сухожильно-связочные аппараты. У детей 6—7 лет они еще недоразвиты. К 12—14 годам эти мышцы укреплены сухожильно-связочным аппаратом, но меньше, чем у взрослых.

Мышцы брюшного пресса у новорожденных не развиты. С 1 до 3 лет эти мышцы и их апоневрозы дифференцируются, но только к 14—16 годам передняя стенка живота укреплена почти как у взрослого. До 9 лет прямая мышца живота очень интенсивно растет, ее вес по сравнению с новорожденным увеличивается почти в 90 раз, внутренней косой — больше 70, наружной косой — 67, а поперечной — в 60. Эти мышцы противостоят все увеличивающемуся давлению внутренних органов. С 12 до 16 лет растут мышцы, обеспечивающие вертикальное положение тела, особенно подвздошно-поясничная, играющая важную роль в ходьбе. Толщина волокон подвздошно-поясничной мышцы к 15—16 годам становится наибольшей. В двуглавой мышце плеча и четырехглавой бедра мышечные волокна утолщаются к 1 году в 2 раза, к 6 годам — в 5, к 17 годам — в 8, а к 20 годам — в 17 раз.

Большинство авторов признает новообразование мышечных волокон в результате систематических физических упражнений. Правильный подбор физических упражнений регулирует гармоническое развитие скелетных мышц.

Рост мышц в длину происходит в месте перехода мышечных волокон в сухожилие. Он продолжается до 23—25 лет. Сократимый отдел мышцы особенно быстро растет с 13 до 15 лет. К 14— 15 годам дифференцировка мышц достигает высокого уровня. Рост волокон в толщину продолжается до 30—35 лет. Поперечник мышечных волокон утолщается к 1 году в 2 раза, к 5 годам — в 5, к 17 — в 8, к 20 — в 17, т. е. наиболее интенсивно.

Масса мышц особенно интенсивно возрастает у девочек в 11—12 лет, а у мальчиков в 13—14.

У подростков за 2—3 года масса скелетных мышц увеличивается на 12%. а в предшествующие 7 лет всего на 5%. Вес скелетных мышц достигает у них примерно 35% по отношению к весу тела и значительно возрастает их сила. Сильно развивается мускулатура спины, плечевого пояса, рук и ног, вызывающая усиленный рост трубчатых костей.

С возрастом изменяются также химический состав и строение скелетных мышц. Мышцы детей содержат больше воды и меньше плотных веществ, чем у взрослых.

Биохимическая активность красных мышечных волокон больше, чем белых, что объясняется различиями в количестве митохондрий или в активности их ферментов. Количество миоглобина — показателя интенсивности окислительных процессов — с возрастом увеличивается. У новорожденного в скелетных мышцах 0,6% миоглобина, у взрослых — 2,7%- У детей содержится относительно меньше сократительных белков — миозина и актина; с возрастом это различие уменьшается.

Мышечные волокна у детей содержат сравнительно больше ядер, они короче и тоньше, и с возрастом их длина и толщина увеличиваются. У новорожденных мышечные волокна очень тонки, нежны, имеют сравнительно слабую поперечную исчерченность и окружены большими прослойками рыхлой соединительной ткани. Сухожилия занимают относительно больше места. Внутри мышечных волокон многие ядра лежат не у мембраны клетки.

Миофибриллы окружены отчетливыми прослойками саркоплазмы. В 2—3 года мышечные волокна в 2 раза толще, расположены плотнее, количество миофибрилл увеличивается, а саркоплазмы — уменьшается и ядра прилегают к мембране. В 7 лет мышечные волокна в 3 раза толще, чем у новорожденных, и отчетливо выражена их поперечная исчерченность. К 15—16 годам строение мышечной ткани такое лее, как у взрослых.

Формирование сарколеммы завершается к 15—16 годам.

Созревание мышечных волокон можно проследить по изменению частоты и амплитуды биотоков, отводимых с двуглавой мышцы плеча при удержании груза. У детей 7—8 лет по мере увеличения времени удержания груза все больше уменьшаются частота и амплитуда биотоков, что доказывает незрелость части мышечных волокон. У детей 12—14 лет частота и амплитуда биотоков не изменяются на протяжении 6—9 сек удерживания груза на максимальной высоте или уменьшаются в более поздние сроки, что указывает на зрелость мышечных волокон.

В отличие от взрослых мышцы у детей прикрепляются к костям дальше от осей вращения суставов, поэтому их сокращение происходит с меньшей потерей силы, чем у взрослых. С возрастом резко изменяется соотношение между мышцей и ее сухожилием, которое растет более интенсивно, что изменяет характер прикрепления мышцы к кости и увеличивает коэффициент полезного действия. Только к 12—14 годам устанавливается отношение мышцы и сухожилия, характерное для взрослого.

В верхних конечностях до 15 лет мышечное брюшко и сухожилие растут одинаково интенсивно, ас 15 до 23—25 лет сухожилие растет быстрее. Некоторые авторы считают, что с 13—15 лет быстрее растет сократительный отдел мышц.

Эластичность мышц у детей примерно в 2 раза больше, чем у взрослых. При сокращении они больше укорачиваются, а при растяжении больше удлиняются.

Первые стадии развития скелетных мышц происходят без участия нервных элементов. Мышечные веретена появляются с 2,5— 3 месяцев утробной жизни. Их поперечник и длина увеличиваются в первые годы жизни. С 6 до 10 лет поперечный размер веретен возрастает незначительно, а с 12—15 они имеют такое же строение, как у взрослых 20—30 лет.

Чувствительная иннервация начинает формироваться с 3,5— 4 месяцев утробной жизни и к 7—8 месяцам достигает большой сложности. К рождению центростремительные нервные волокна усиленно миелинизируются. Во всех мышцах мышечные веретена имеют одинаковое строение, но их число и уровень развития отдельных структур в разных мышцах неодинаковы. Сложность их строения зависит от амплитуды движения и силы сокращения мышцы. Чем больше координационная работа мышцы, тем больше в ней мышечных веретен и тем они сложнее. В мышцах, которые в физиологических условиях не растягиваются, мышечных веретен нет, например, в коротких мышцах ладони и стопы.

Двигательные нервные окончания (мионевральные аппараты) появляются в утробной жизни с 3,5—5 месяцев. Их развитие в разных мышцах сходно. К рождению в мышцах руки их больше, чем в межреберных и мышцах голени. Уже у новорожденных двигательные нервные волокна окружены миелиновой оболочкой, которая к 7 годам значительно утолщается. Нервные окончания усложняются к 3—5 годам, к 7—14 еще более дифференцируются, а к 19—20 годам достигают полной зрелости.

источник

  • Физиология
  • История физиологии
  • Методы физиологии

У человека различают три вида мышц: поперечнополосатые скелетные мышцы; поперечнополосатая сердечная мышца; гладкие мышцы внутренних органов, кожи, сосудов.

Скелетные мышцы совместно со скелетом составляют опорно-двигательную систему организма, которая обеспечивает поддержание позы и перемещение тела в пространстве. Кроме того, они выполняют защитную функцию, предохраняя внутренние органы от повреждений.

Скелетные мышцы являются активной частью опорно-двигательного аппарата, включающего также кости и их сочленения, связки, сухожилия. Масса мышц может достигать 50% общей массы тела.

С функциональной точки зрения к двигательному аппарату можно отнести и моторные нейроны, посылающие нервные импульсы к мышечным волокнам. Тела моторных нейронов, иннервирующих аксонами скелетную мускулатуру, располагаются в передних рогах спинного мозга, а иннервирующих мышцы челюстно-лицевой области — в моторных ядрах ствола мозга. Аксон мотонейрона при входе в скелетную мышцу ветвится, и каждая веточка участвует в формировании нервно-мышечного синапса на отдельном мышечном волокне (рис. 1).

Рис. 1. Разветвления аксона моторного нейрона на аксонные терминалы. Электронограмма

Рис. Строение скелетной мышцы человека

Скелетные мышцы состоят из мышечных волокон, которые объединяются в мышечные пучки. Совокупность мышечных волокон, иннервируемых веточками аксона одного моторного нейрона, называют двигательной (или моторной) единицей. В глазных мышцах 1 двигательная единица может содержать 3-5 мышечных волокон, в мышцах туловища — сотни волокон, в камбаловидной мышце — 1500-2500 волокон. Мышечные волокна 1 двигательной единицы имеют одинаковые морфофункциональные свойства.

Функциями скелетных мышц являются:

  • передвижение тела в пространстве;
  • перемещение частей тела относительно друг друга, в том числе осуществление дыхательных движений, обеспечивающих вентиляцию легких;
  • поддержание положения и позы тела.

Скелетные мышцы вместе со скелетом составляют опорно-двигательную систему организма, которая обеспечивает поддержание позы и перемещение тела в пространстве. Наряду с этим скелетные мышцы и скелет выполняют защитную функцию, предохраняя внутренние органы от повреждения.

Кроме того, поперечно-полосатые мышцы имеют значение в выработке тепла, поддерживающего температурный гомеостаз, и в депонировании некоторых питательных веществ.

Рис. 2. Функции скелетных мышц

Скелетные мышцы обладают следующими физиологическими свойствами.

Возбудимость. Обеспечивается свойством плазматической мембраны (сарколеммы) отвечать возбуждением на поступление нервного импульса. Из-за большей разности потенциала покоя мембраны поперечно-полосатых мышечных волокон (Е около 90 мВ) возбудимость их ниже, чем нервных волокон (Е около 70 мВ). Амплитуда потенциала действия у них больше (около 120 мВ), чем у других возбудимых клеток.

Это позволяет на практике достаточно легко регистрировать биоэлектрическую активность скелетных мыши. Длительность потенциала действия составляет 3-5 мс, что определяет короткую продолжительность фазы абсолютной рефрактерности возбужденной мембраны мышечных волокон.

Проводимость. Обеспечивается свойством плазматической мембраны формировать локальные круговые токи, генерировать и проводить потенциал действия. В результате потенциал действия распространяются по мембране вдоль мышечного волокна и вглубь по поперечным трубочкам, формируемым мембраной. Скорость проведения потенциала действия составляет 3-5 м/с.

Сократимость. Представляет собой специфическое свойство мышечных волокон изменять свою длину и напряжение вслед за возбуждением мембраны. Сократимость обеспечивается специализированными сократительными белками мышечного волокна.

Скелетные мышцы обладают также вязкоэластическими свойствами, имеющими важное значение для расслабления мышц.

Рис. Скелетные мышцы человека

Скелетные мышцы характеризуются растяжимостью, эластичностью, силой и способностью совершать работу.

Растяжимость — способность мышцы изменять длину под действием растягивающей силы.

Эластичность — способность мышцы восстанавливать первоначальную форму после прекращения действия растягивающей или деформирующей силы.

Сила мышц — способность мышцы поднимать груз. Для сравнения силы различных мышц определяют их удельную силу путем деления максимальной массы на число квадратных сантиметров ее физиологического сечения. Сила скелетной мышцы зависит от многих факторов. Например, от числа двигательных единиц, возбуждаемых в данный момент времени. Также она зависит от синхронности работы двигательных единиц. Сила мышцы зависит и от исходной длины. Существует определенная средняя длина, при которой мышца развивает максимальное сокращение.

Сила гладких мышц тоже зависит от исходной длины, синхронности возбуждения мышечного комплекса, а также от концентрации ионов кальция внутри клетки.

Способность мышцы совершать работу. Работа мышцы определяется произведением массы поднятого груза на высоту подъема.

Работа мышц возрастаете увеличением массы поднимаемого груза, но до определенного предела, после которого увеличение груза приводит к уменьшению работы, т.е. снижается высота подъема. Максимальная работа совершается мышцей при средних нагрузках. Это называется законом средних нагрузок. Величина мышечной работы зависит от числа мышечных волокон. Чем толще мышца, тем больший груз она может поднять. Длительное напряжение мышцы приводит к ее утомлению. Это обусловлено истощением энергетических запасов в мышце (АТФ, гликоген, глюкоза), накоплением молочной кислоты и других метаболитов.

Растяжимость — это способность мышцы изменять свою длину под действием растягивающей ее силы. Эластичность — способность мышцы принимать свою первоначальную длину после прекращения действия растягивающей или деформирующей силы. Живая мышца обладает малой, но совершенной эластичностью: уже небольшая сила способна вызвать относительно большое удлинение мышцы, а возвращение ее к первоначальным размерам является полным. Это свойство очень важно для осуществления нормальных функций скелетных мышц.

Сила мышцы определяется максимальным грузом, который мышца в состоянии поднять. Для сравнения силы различных мышц определяют их удельную силу, т.е. максимальный груз, который мышца в состоянии поднять, делят на число квадратных сантиметров ее физиологического поперечного сечения.

Способность мышцы совершать работу. Работа мышцы определяется произведением величины поднятого груза на высоту подъема. Работа мышцы постепенно увеличивается с увеличением груза, но до определенного предела, после которого увеличение груза приводит к уменьшению работы, так как снижается высота подъема груза. Следовательно, максимальная работа мышцей производится при средних величинах нагрузок.

Утомление мышц. Мышцы не могут работать беспрерывно. Длительная работа приводит к снижению их работоспособности. Временное понижение работоспособности мышцы, наступающее при длительной работе и исчезающее после отдыха, называется утомлением мышцы. Принято различать два вида утомления мышц: ложное и истинное. При ложном утомлении утомляется не мышца, а особый механизм передачи импульсов с нерва на мышцу, называемый синапсом. В синапсе истощаются резервы медиаторов. При истинном утомлении в мышце происходят следующие процессы: накопление недоокисленных продуктов распада питательных веществ вследствие недостаточного поступления кислорода, истощение запасов источников энергии, необходимой для мышечного сокращения. Утомление проявляется уменьшением силы сокращения мышцы и степени расслабления мышцы. Если мышца на некоторое время прекращает работу и находится в состоянии покоя, то восстанавливается работа синапса, а с кровью удаляются продукты обмена и доставляются питательные вещества. Таким образом, мышца вновь приобретает способность сокращаться и производить работу.

Читайте также:  Что такое транзиторный гипертонус мышц

Раздражение мышцы или иннервирующего ее двигательного нерва одиночным стимулом вызывает одиночное сокращение мышцы. Различают три основные фазы такого сокращения: латентная фаза, фаза укорочения и фаза расслабления.

Амплитуда одиночного сокращения изолированного мышечного волокна от силы раздражения не зависит, т.е. подчиняется закону «все или ничего». Однако сокращение целой мышцы, состоящей из множества волокон, при ее прямом раздражении зависит от силы раздражения. При пороговой силе тока в реакцию вовлекается лишь небольшое число волокон, поэтому сокращение мышцы едва заметно. С увеличением силы раздражения число волокон, охваченных возбуждением, возрастает; сокращение усиливается до тех пор, пока все волокна не оказываются сокращенными («максимальное сокращение») — этот эффект называется лестницей Боудича. Дальнейшее усиление раздражающего тока на сокращение мышцы не влияет.

Рис. 3. Одиночное сокращение мышцы: А — момент раздражения мышцы; а-6 — скрытый период; 6-в — сокращение (укорочение); в-г — расслабление; г-д — последовательные эластические колебания.

В естественных условиях к скелетной мышце из центральной нервной системы поступают не одиночные импульсы возбуждения, которые служат для нее адекватными раздражителями, а серии импульсов, на которые мышца отвечает длительным сокращением. Длительное сокращение мышцы, возникающее в ответ на ритмическое раздражение, получило название тетанического сокращения, или тетануса. Различают два вида тетануса: зубчатый и гладкий (рис. 4).

Гладкий тетанус возникает, когда каждый последующий импульс возбуждения поступает в фазу укорочения, а зубчатый — в фазу расслабления.

Амплитуда тетанического сокращения превышает амплитуду одиночного сокращения. Академик Н.Е. Введенский обосновал изменчивость амплитуды тетануса неодинаковой величиной возбудимости мышцы и ввел в физиологию понятия оптимума и пессимума частоты раздражения.

Оптимальной называется такая частота раздражения, при которой каждое последующее раздражение поступает в фазу повышенной возбудимости мышцы. При этом развивается тетанус максимальной величины (оптимальный).

Пессимальной называется такая частота раздражения, при которой каждое последующее раздражение осуществляется в фазу пониженной возбудимости мышцы. Величина тетануса при этом будет минимальной (пессимальной).

Рис. 4. Сокращение скелетной мышцы при разной частоте раздражения: I — сокращение мышцы; II — отметка частоты раздражения; а — одиночные сокращения; б- зубчатый тетанус; в — гладкий тетанус

Для скелетных мышц характерны изотонический, изометрический и смешанный режимы сокращения.

При изотоническом сокращении мышцы изменяется ее длина, а напряжение остается постоянным. Такое сокращение происходит в том случае, когда мышца не преодолевает сопротивления (например, не перемещает груз). В естественных условиях близкими к изотоническому типу сокращениями являются сокращения мышц языка.

При изометрическом сокращении в мышце во время ее активности нарастает напряжение, но из-за того, что оба конца мышцы фиксированы (например, мышца пытается поднять большой груз), она не укорачивается. Длина мышечных волокон остается постоянной, меняется лишь степень их напряжения.

Гладкие мышцы сокращаются по аналогичным механизмам.

В организме сокращения мышц никогда не бывают чисто изотоническими или изометрическими. Они всегда имеют смешанный характер, т.е. происходит одновременное изменение и длины, и напряжения мышцы. Такой режим сокращения называется ауксотоническим, если преобладает напряжение мышцы, или ауксометрическим, если преобладает укорочение.

источник

Назовите мышцы, действующие на коленный сустав в качестве его сгибателей и разгибателей.

Назовите мышцы плеча, действующие на плечевой и локтевой суставы в качестве сгибателей и разгибателей.

3. Назовите мышцы предплечья, являющиеся сгибателями, разгиба­телями кисти, пальцев, а также мышцы, поворачивающие пред­плечье и кисть вовнутрь и кнаружи.

4. Сколько групп мышц выделяют на кисти и где они располагаются?

5. На какие группы подразделяют мышцы нижней конечности?

6. На какие суставы действуют наружные и внутренние мышцы таза, какие движения они производят?

8. Какие мышцы голени действуют на голеностопный сустав в качест­ве сгибателей и разгибателей стопы?

9. Какие функциональные группы мышц имеются на стопе, какие дви­жения они производят?

10. Какое действие на своды стопы оказывают мышцы, расположенные на подошве стопы, и мышцы голени, чьи длинные сухожилия при­крепляются на стопе?

Формирование скелетных мышц начинается на очень ранних этапах эмбрионального развития. На 8-й не­деле внутриутробной жизни заложе­ны уже все мышечные группы тела. В процессе созревания мышечных волокон увеличивается количество в них миофибрилл, ядер, появляется поперечно-полосатая исчерченность.

Наиболее интенсивный прирост мышечной массы происходит в дет­ском возрасте и у подростков в период полового созревания. Рост мышц в длину может продолжаться до 25 лет. Диаметр мышечных во­локон увеличивается до 35 лет. Хи­мический состав мышц с возрастом также изменяется. В мышцах детей содержится больше воды и меньше сократительных белков, чем у взрос­лого человека. Еще сто лет назад создатель спортивной морфологии в нашей стране П. Ф. Лесгафт сформулиро­вал правило, соответственно которо­му рост костей определяется актив­ностью окружающих их мышц. Мощ­ность и величина мышц тела нахо­дятся в прямой зависимости от упражнений и тренировки. При физи­ческой нагрузке усиливается крово­снабжение мышц, улучшается регу­ляция их деятельности нервной сис­темой, происходит увеличение массы мускулатуры. Для того чтобы стать сильным, ловким, выносливым и ра­ботоспособным, необходимо регу­лярно заниматься физическим тру­дом, физкультурой и спортом.

Усиленная мышечная работа зна­чительно увеличивает потребность в кислороде, т. е. способствует трени­ровке дыхательной и сердечно-сосу­дистой систем, развитию сердечной мышцы и мышц, действующих на грудную клетку.

Снижение физических нагрузок неблагоприятно отражается на здо­ровье. У людей развивается слабость скелетных и сердечной мышц, воз­никают нарушения в работе сердеч­но-сосудистой системы. Одновремен­но происходит перестройка костей, в организме накапливается жир, уско­ряется процесс старения. Основные способы борьбы с понижением дви­гательной активности (гиподинамией) – физический труд, физкуль­тура и спорт.

Каждому человеку свойственна специфическая осанка. Под осанкой понимают положение тела во время стояния, сидения, ходьбы и работы. При правильной осанке изгибы позвоночного столба умеренные, плечи развернуты, ноги прямые с нормальными сводами стоп. Пра­вильная осанка наиболее благо­приятна для функционирования сис­темы органов движения и внутрен­них органов, что способствует повы­шению работоспособности.

При неправильной осанке голова наклонена вперед, плечи опущены, живот выпячен, грудь западает. Не­правильная осанка затрудняет ра­боту сердца, легких, желудочно-кишечного тракта, снижает обмен ве­ществ. Часто неправильная осанка приводит к сколиозу – искривле­нию позвоночного столба. Чтобы не возникла опасность искривления по­звоночника, школьнику, сидящему за партой, следует держать туловище прямо, а голову лишь немного на­клонять вперед. Между грудью и партой должно оставаться свободное пространство в 3 – 4 см, предплечья должны свободно лежать на столе, ноги необходимо согнуть в тазобед­ренном и коленном суставах под пря­мым углом, а ступни должны опи­раться на пол или подножку парты.

Рис. 40. Отпечаток стопы с разной высотой свода: 1 – высокая стопа, 2, 3 – нормальная стопа с разной высотой свода, 4 – плоская стопа.

Другим дефектом развития опор­но-двигательного аппарата, часто проявляющимся в детском возрасте, является частичное или полное опу­щение продольных и поперечного сводов стопы – плоскостопие. Плос­костопие часто бывает приобретен­ным, значительно реже – врожден­ным, При плоскостопии стопа сопри­касается с землей почти всеми своими точками, след лишен внут­ренней выемки (рис, 40). Для укреп­ления мышц, поддерживающих сво­ды стопы, рекомендуется ходить бо­сиком.

1. В каком возрасте и в связи с чем наблюдается наиболее интенсивный рост мышц?

2. От каких обстоятельств зависят величина и сила мышц?

3. Какую роль играют труд, физкультура и спорт в увеличении силы скелетных мышц?

4. Какие факторы могут отрицательно влиять на формирование осанки?

5. Что такое плоскостопие?

источник

Мышцы – одна из основных составляющих тела. Они основаны на ткани, волокна которой сокращаются под воздействием нервных импульсов, что позволяет телу двигаться и удерживаться в окружающей среде.

Мышцы располагаются в каждой части нашего тела. И даже если мы не знаем об их существовании, они все равно есть. Достаточно, например, первый раз сходить в тренажерный зал или позаниматься аэробикой – на следующий день у вас начнут болеть даже те мышцы, о наличии которых вы и не догадывались.

Они отвечают не только за движение. В состоянии покоя мышцы тоже требуют энергии, чтобы поддерживать себя в тонусе. Это необходимо для того, чтобы в любой момент определенная часть тела смогла ответить на нервный импульс соответствующим движением, а не тратила время на подготовку.

Чтобы понять, как устроены мышцы, предлагаем вспомнить основы, повторить классификацию и заглянуть в клеточное строение мышц. Также мы узнаем о болезнях, которые могут ухудшить их работу, и о том, как укрепить скелетную мускулатуру.

По своему наполнению и происходящим реакциям мышечные волокна делятся на:

Скелетные мышцы – продолговатые трубчатые структуры, количество ядер в одной клетке которых может доходить до нескольких сотен. Состоят они из мышечной ткани, которая прикреплена к различным частям костного скелета. Сокращения поперечно-полосатых мышц способствуют движениям человека.

Чем различаются мышцы? Фото, представленные в нашей статье, помогут нам в этом разобраться.

Скелетные мышцы являются одной из главных составляющих опорно-двигательной системы. Они позволяют двигаться и сохранять равновесие, а также задействованы в процессе дыхания, голосообразования и других функциях.

В организме человека насчитывается более 600 мышц. В процентном соотношении их общая масса составляет 40% от общей массы тела. Мышцы классифицируются по форме и строению:

  • толстые веретенообразные;
  • тонкие пластинчатые.

Деление скелетных мышц на группы осуществляется в зависимости от места нахождения и значения их в деятельности различных органов тела. Основные группы:

  • мимические – задействуются при улыбке, общении и создании различных гримас, обеспечивая при этом движение составляющих частей лица;
  • жевательные – способствуют смене положения челюстно-лицевого отдела;
  • произвольные мышцы внутренних органов головы (мягкого неба, языка, глаз, среднего уха).

Группы скелетных мышц шейного отдела:

  • поверхностные – способствуют наклонным и вращательным движениям головы;
  • средние – создают нижнюю стенку ротовой полости и способствуют движению вниз челюсти, подъязычной кости и гортанных хрящей;
  • глубокие осуществляют наклоны и повороты головы, создают поднятие первого и второго ребер.

Мышцы, фото которых вы видите здесь, отвечают за туловище и делятся на мышечные пучки следующих отделов:

  • грудной – приводит в действие верхнюю часть торса и руки, а также способствует изменению положения ребер при дыхании;
  • отдел живота – дает движение крови по венам, осуществляет изменения положения грудной клетки при дыхании, воздействует на функционирование кишечного тракта, способствует сгибанию туловища;
  • спинной – создает двигательную систему верхних конечностей.
  • верхние – состоят из мышечных тканей плечевого пояса и свободной верхней конечности, помогают двигать рукой в плечевой суставной сумке и создают движения запястья и пальцев;
  • нижние – играют основную роль при передвижении человека в пространстве, подразделяются на мышцы тазового пояса и свободную часть.

В своей структуре она имеет огромное количество мышечных волокон продолговатой формы диаметром от 10 до 100 мкм, длина их колеблется от 1 до 12 см. Волокна (микрофибриллы) бывают тонкими – актиновые, и толстыми – миозиновые.

Первые состоят из белка, имеющего фибриллярную структуру. Он называется актин. Толстые волокна состоят из различных типов миозина. Отличаются они по времени, которое требуется на разложение молекулы АТФ, что обуславливает разную скорость сокращений.

Миозин в гладких мышечных клетках находится в дисперсном состоянии, хотя имеется большое количество белка, который, в свою очередь, является многозначащим в продолжительном тоническом сокращении.

Строение скелетной мышцы похоже на сплетенный из волокон канат или многожильный провод. Сверху ее окружает тонкий чехол из соединительной ткани, называемый эпимизиум. От его внутренней поверхности вглубь мышцы отходят более тонкие разветвления соединительной ткани, создающие перегородки. В них «завернуты» отдельные пучки мышечной ткани, которые содержат до 100 фибрилл в каждом. От них еще глубже отходят более узкие ответвления.

Сквозь все слои в скелетные мышцы проникают кровеносная и нервная системы. Артериальная вена проходит вдоль перимизиума – это соединительная ткань, покрывающая пучки мышечных волокон. Артериальные и венозные капилляры располагаются рядом.

Скелетные мышцы развиваются из мезодермы. Со стороны нервного желобка образуются сомиты. По истечении времени в них выделяются миотомы. Их клетки, приобретая форму веретена, эволюционируют в миобласты, которые делятся. Некоторые из них прогрессируют, а другие остаются без изменений и образуют миосателлитоциты.

Незначительная часть миобластов, благодаря соприкосновению полюсов, создает контакт между собой, далее в контактной зоне плазмалеммы распадаются. Благодаря слиянию клеток создаются симпласты. К ним переселяются недифференцированные молодые мышечные клетки, находящиеся в одном окружении с миосимпластом базальной мембраны.

Эта мускулатура является основой опорно-двигательного аппарата. Если она сильна, тело проще поддерживать в нужном положении, а вероятность появления сутулости или сколиоза сводится к минимуму. О плюсах занятий спортом знают все, поэтому рассмотрим роль, которую играет в этом мускулатура.

Сократительная ткань скелетных мышц выполняет в организме человека множество различных функций, которые нужны для правильного расположения тела и взаимодействия его отдельных частей друг с другом.

Мышцы выполняют следующие функции:

  • создают подвижность тела;
  • берегут тепловую энергию, созданную внутри тела;
  • способствуют перемещению и вертикальному удержанию в пространстве;
  • содействуют сокращению дыхательных путей и помогают при глотании;
  • формируют мимику;
  • способствуют выработке тепла.

Когда мышечная ткань находится в покое, в ней всегда остается незначительное напряжение, называемое мышечным тонусом. Оно образуется из-за незначительных импульсных частот, которые поступают в мышцы из спинного мозга. Их действие обуславливается сигналами, проникающими из головы к спинным мотонейронам. Тонус мышц также зависит от их общего состояния:

  • растяжения;
  • уровня наполняемости мышечных футляров;
  • обогащения кровью;
  • общего водного и солевого баланса.

Человек обладает способностью регулировать уровень нагрузки мышц. В результате длительных физических упражнений либо сильного эмоционального и нервного перенапряжения тонус мышц непроизвольно увеличивается.

Эта функция является основной. Но даже она, при кажущейся простоте, может делиться на несколько видов.

  • изотонические – способность мышечной ткани укорачиваться без изменений мышечных волокон;
  • изометрические – при реакции волокно сокращается, но его длина остается прежней;
  • ауксотонические – процесс сокращения мышечной ткани, где длина и напряжение мышц подвергнута изменениям.

Сначала мозг посылает через систему нейронов импульс, которых доходит до мотонейрона, примыкающего к мышечному пучку. Далее эфферентный нейрон иннервируется из синоптического пузырька, и выделяется нейромедиатор. Он соединяется с рецепторами на сарколемме мышечного волокна и открывает натриевый канал, который приводит к деполяризации мембраны, вызывающей потенциал действия. При достаточном количестве нейромедиатор стимулирует выработку ионов кальция. Затем он соединяется с тропонином и стимулирует его сокращение. Тот, в свою очередь, оттягивает тропомеазин, позволяя актину соединиться с миозином.

Дальше начинается процесс скольжения актинового филамента относительно миозинового, вследствие чего происходит сокращение скелетных мышц. Разобраться в процессе сжатия поперечно-полосатых мышечных пучков поможет схематическое изображение.

Взаимодействие большого количества мышечных пучков способствует различным движениям туловища.

Работа скелетных мышц может происходить такими способами:

  • мышцы-синергисты работают в одном направлении;
  • мышцы-антагонисты способствуют выполнению противоположных движений для осуществления напряжения.

Антагонистическое действие мышц является одним из главных факторов в деятельности опорно-двигательного аппарата. При осуществлении какого-либо действия в работу включаются не только мышечные волокна, которые совершают его, но и их антагонисты. Они способствуют противодействию и придают движению конкретность и грациозность.

Читайте также:  Тянущие боли в мышцах промежности

Поперечно-полосатая скелетная мышца при воздействии на сустав совершает сложную работу. Ее характер определяется расположением оси сустава и относительным положением мышцы.

Некоторые функции скелетных мышц являются недостаточно освещенными, и зачастую о них не говорят. Например, некоторые из пучков выступают рычагом для работы костей скелета.

Действие скелетной мускулатуры осуществляется за счет двух белков: актина и миозина. Эти составляющие обладают способностью передвигаться относительно друг друга.

Для осуществления работоспособности мышечной ткани необходим расход энергии, заключенной в химических связях органических соединений. Распад и окисление таких веществ происходят в мышцах. Здесь обязательно присутствует воздух, и выделяется энергия, 33% из всего этого расходуется на работоспособность мышечной ткани, а 67% передается другим тканям и тратится на поддержание постоянной температуры тела.

В большинстве случаев отклонения от нормы при функционировании мышц обусловлены патологическим состоянием ответственных отделов нервной системы.

Наиболее распространенные патологии скелетных мышц:

  • Мышечные судороги – нарушение электролитного баланса во внеклеточной жидкости, окружающей мышечные и нервные волокна, а также изменения осмотического давления в ней, особенно его повышение.
  • Гипокальциемическая тетания – непроизвольные тетанические сокращения скелетных мышц, наблюдаемые при падении внеклеточной концентрации Са2+ примерно до 40% от нормального уровня.
  • Мышечная дистрофия характеризуется прогрессирующей дегенерацией волокон скелетных мышц и миокарда, а также мышечной нетрудоспособностью, которая может привести к летальному исходу из-за дыхательной либо сердечной недостаточности.
  • Миастения – хроническое аутоиммунное заболевание, при котором в организме образуются антитела к никотиновому ACh-рецептору.

Правильное питание, образ жизни и регулярные тренировки помогут вам стать обладателем здоровых и красивых скелетных мышц. Необязательно заниматься тяжелой атлетикой и наращивать мышечную массу. Достаточно регулярных кардиотренировок и занятий йогой.

Не стоит забывать про обязательный прием необходимых витаминов и минералов, а также регулярные посещения саун и бань с вениками, которые позволяют обогатить кислородом мышечную ткань и кровеносные сосуды.

Систематические расслабляющие массажи повысят эластичность и репродуктивность мышечных пучков. Также положительное воздействие на структуру и функционирование скелетных мышц оказывает посещение криосауны.

источник

К опорно-двигатель­ному аппарату относятся скелет и мышцы, объединенные в еди­ную костно-мышечную систему. Основной функцией ее является не только опора, но и перемещение тела и его частей в пространстве. Опор­но-двигательный аппарат разделяют на пассивную и ак­тивную части. К пассивной части относятся кости и соеди­нения костей. Активную часть составляют мышцы, кото­рые благодаря способности к сокращению приводят в дви­жение кости скелета.

С помощью опорно-двигательного аппарата осуществляется одна из важнейших функций организма — движение. При ограничении движений резко за­медляется как физическое, так и психическое развитие.

Скелет образует структур­ную основу тела и в значительной мере определяет его форму и размер. Скелет (от rpeч.sceleton — высохший, высушенный) пред­ставляет собой комплекс костей, различных по форме и ве­личине. В скелете человека различают кости туловища, голо­вы, верхних и нижних конечностей. Кости соединены друг с другом при помощи различного вида соединений и выполняют функции опоры, передвижения-, защиты, депо различных солей. Костный скелет называют также твердым, жестким скелетом.

Функции опоры и передвижения скелета сочетаются с рес­сорной функцией суставных хрящей и других конструкций (сводов стопы), смягчающих толчки и сотрясения. Защитная функция выражается в образовании костных вместилищ для жизненно важных органов: череп защища­ет головной мозг, позвоночный столб защищает спинной мозг, грудная клетка защищает сердце, легкие и крупные кровеносные сосуды. Кости скелета претерпевают значительные возрастные изменения. На рост и развитие костей влияние оказывают социаль­ные факторы, в частности питание. Изменения костей происходят под влиянием физиче­ских нагрузок. В состав скелета входит 206 костей (85 парных и 36 не­парных). Масса «живого» скелета у новорожденных около 11% массы тела, у детей разного возраста — от 9 до 18%. У взрослых людей отношение массы скелета к массе тела до пожилого, старческого возраста сохраняется на уровне до 20%, затем несколько уменьшается.

Вопрос 2. Рост и развитие костей и суставов.Закладка скелета происходит на 3-й неделе эмбрионального развития: первоначально как соединительнотканное образование, а в середине 2-го месяца развития происходит замещение ее хрящевой, после чего начинается постепенное разрушение хряща и образование вместо него костной ткани. Окостенение скелета не завершается к моменту рождения, поэтому у новорожденного ребенка в скелете содержится много хрящевой ткани. Сама костная ткань значительно отличается по химическому составу от ткани взрослого человека. В ней содержится много органических веществ, она не обладает прочностью и легко искривляется под влиянием неблагоприятных внешних воздействий.

Молодые кости растут в длину за счет хрящей, расположенных между их концами и телом. К моменту окончания роста костей хрящи замещаются костной тканью. За период роста в костях ребенка количество воды сокращается, а количество минеральных веществ увеличивается. Содержание органических веществ при этом уменьшается. Развитие скелета у мужчин заканчивается к 20-24 годам. При этом прекращается рост костей в длину, а их хрящевые части заменяются костной тканью. Развитие скелета у женщин заканчивается к 18-21 году. Каждая кость — сложный орган, состоящий из костной ткани, надкостницы, костного мозга, кровеносных и лимфатических сосу­дов и нервов.

Химический состав костей сложный. Кость состоит из органических и неорганических веществ. Неорганические вещества составляют 65—70% сухой массы кости и пред­ставлены главным образом солями фосфора и кальция. В малых количествах кость содержит более 30 других раз­личных элементов. Органические вещества, получившие на­звание оссеин, составляют 30—35% сухой массы кости. Это костные клетки и коллагеновые волокна. Эластичность, уп­ругость кости зависит от ее органических веществ, а твер­дость — от минеральных солей. Сочетание неорганических и органических веществ в живой кости придает ей необы­чайные крепость и упругость. По твердости и упругости кость можно сравнить с медью, бронзой, чугуном. В молодом возрасте, у детей кости более эластичные, упругие, в них больше органических веществ и меньше неорганических. У пожилых, старых людей в костях преобладают неоргани­ческие вещества. Кости становятся более ломкими.

У каждой кости выделяют плотное (компактное) и губ­чатое вещество. Распределение компактного и губчатого вещества зависит от места в организме и функции костей. Компактное вещество находится в тех костях и в тех их ча­стях, которые выполняют функции опоры и движения, на­пример в диафизах трубчатых костей.

В местах, где при большом объеме требуется сохранить легкость и вместе в тем прочность, образуется губчатое ве­щество, например в эпифизах трубчатых костей.

Губчатое вещество находится также в коротких (губча­тых) и плоских костях. Костные пластинки образуют в них неодинаковой толщины перекладины, пере­секающиеся между собой в различных направлених. По­лости между перекладинами заполнены крас­ным костным мозгом. В трубчатых костях костный мозг находится в канале кости, называемом костномозговой полостью. У взрослого человека различают красный и желтый костный мозг. Красный костный мозг за­полняет губчатое вещество плоских костей и эпифизов труб­чатых костей. Желтый костный мозг (ожиревший) находит­ся в диафизах трубчатых костей.

Вся кость, за исключением суставных поверхностей, покрыта надкостницей, или периостом. Суставные поверх­ности кости покрыты суставным хрящом. Внутренний слой надкостницы состоит из клеток, кото­рые растут и размножаются, обеспечивая рост кости в толщину, а при переломах — образование костной мозоли. Строение и функция суставов. Все соединения костей делятся на три большие груп­пы: непрерывные соединения, полусуставы (сим­физы), и прерывные соединения (синовиальные со­единения).

Непрерывные соединения костей образованы с помощью различных видов соединительной ткани. Эти соединения прочные, эластичные, но имеют ограниченную подвиж­ность.

Симфизы являются хрящевыми соединениями. В толще образующего их хряща имеется небольшая щелевидная полость, содержащая немного жидкости. К симфи­зам относится лобковый симфиз.

Суставы, или синовиальные соединения, представляют собой прерывные соединения костей, прочные и отлича­ющиеся большой подвижностью. Все суставы имеют следу­ющие обязательные анатомические элементы: суставные поверхности костей, покрытые суставным хрящом; сус­тавная капсула; суставная полость; синовиальная жидкость. Суставные поверхности покрыты упругим гиали­новым хрящом. Толщина суставного хряща колеблется в пределах от 0,2 до 6,0 мм и находится в прямой зависимости от функциональной на­грузки, испытываемой суставом. Чем больше нагрузка, тем толще суставной хрящ. Суставная капсула имеет плотный наружный слой — фиброзную мембрану, прикрепляющу­юся к костям вблизи краев суставных поверхностей, где она переходит в надкостницу. Фиброзный слой суставной капсулы местами утолщен, образует внутрикапсульные связки. Связки могут быть вне капсулы, рядом с нею (внекапсульные связки).

Связки укрепляют сустав и направляют его движения, они также ограничивают движения суставов. Связки чрез­вычайно прочные. Так, например, прочность на разрыв подвздошно-бедренной связки достигает 350 кг, а длин­ной связки подошвы — 200 кг.

Суставная полость в норме у живого человека представ­ляет собой узкую щель, в которой содержится синовиаль­ная жидкость. Даже у таких крупных суставов, как колен­ный или тазобедренный, ее количество не превышает 2 — 3 см 3 .

Вопрос 3. Мышечная система: строение классификация и основные функциональные свойства мышц.В организме человека по структуре и функции различают три типа мышц:

· гладкие мышцы внутренних органов и сосудов.

Активной частью опорно-двигательного аппарата являются скелетные мышцы.

Скелетные мышцы обладают такими свойствами, как возбудимость, проводимость и сократимость. Мышцы спо­собны под влиянием нервных импульсов возбуждаться, приходить в деятельное состояние. По функции различают мышцы-сгибатели, разгибатели, приво­дящие и отводящие мышцы, а также мышцы, вращающие внутрь и наружу. В процессе развития ребенка отдельные мышечные группы рас­тут неравномерно. Мышцы ребенка бледнее, нежнее и более эластичны, чем мыш­цы взрослого человека. Мышцы, прикрепляющиеся к костям скелета, всегда находятся в состоянии напряжения, которое называют мышечным тонусом. Увеличение мышечной массы и структур­ные преобразования мышечных волокон, связанные с увеличением основного сократительного субстрата, приводят к увеличению с возрастом мышечной силы. Дети этого возраста более приспособлены к крат­ковременным скоростно-силовым динамическим упражнениям.

Однако младших школьников следует постепенно приучать к сохранению статических поз. Особое значение статические упраж­нения имеют для выработки и сохранения правильной осанки.

Наиболее интенсивно мышечная сила увеличивается в подрост­ковом возрасте. В течение длительного периода онтогенеза формируется и одно из важнейших качеств — выносливость (способность человека к продолжительному выполнению того или иного вида умственной или физической (мышечной) деятельности без снижения эффективности).

Вопрос 4. Работа и сила мышц в различные возрастные периоды. Мышцы действуют на костные рычаги, приводят их в движение или удерживают части тела в определенном по­ложении. В каждом движении обычно участвует несколько мышц. Мышцы, действующие на сустав в одном направле­нии, называют синергистами, действующие в разных на­правлениях — антагонистами.

На кости скелета мышцы действуют с определенной силой и выполняют при этом работу — динамическую или статическую. При динамической работе костные рычаги изменяют свое положение, перемещаются в пространстве. Поочередно сокращаются различные группы мыши. Мышцы, производящие динамическую работу, быстро сокращаются и, работая с большим напряжением, скоро утомляются. Но обычно различные группы мышечных волокон при динамической работе сокращаются поочередно, что дает воз­можность мышце длительное время совершать работу. Нервная система, управляя работой мышц, приспосабливает их работу к текущим потребностям организма. Это дает им возможность ра­ботать экономно, с высоким коэффициентом полезного действия.

При статической работе мышцы напрягаются, но длина их не изменяется, тело (или его части) удерживается в опре­деленном неподвижном положении. Такое сокращение мышц без изменения их длины называют изометрическим сокращением. При статическом усилии мышца находится в состоянии на­пряжения. При некоторых упражнениях (на кольцах, параллельных брусьях, при удержании поднятой штанги) статическая работа требует одновременного сокращения почти всех мышечных волокон и, естественно, может быть очень непродолжительной из-за разви­вающегося утомления. Мышца тем сильнее, чем больше в ней мышечных волокон, т, е. чем она толще. При пере­счете на 1 см 2 поперечного сечения мышца способна поднять груз до 10 кг. Для каждого вида мышечной деятельности можно подобрать некоторый средний (оптимальный) ритм и величину нагрузки, при которых будет выполнена наибольшая величина работы, а утомление будет развиваться постепенно.

Работа мышц — необходимое условие их существования. Дли­тельная бездеятельность мышц ведет к их атрофии и потере ими работоспособности. Тренировка, т. е. систематическая, нечрезмер­ная работа мышц, способствует увеличению их объема, возраста­нию силы и работоспособности, что важно для физического раз­вития всего организма. .Масса мышц интенсивно нарастает, когда ребенок начинает ходить, и к 2—3 годам составляет примерно 23% массы тела. У подростков 15 лет она составляет 32,6% массы тела. Наиболее быстро масса мышц на­растает в возрасте от 15 до 17—18 лет, и в юношеском возрасте она составляет 44,2% массы тела. Увеличение массы мышц до­стигается как их удлинением, так и увеличением их толщи­ны, в основном за счет диаметра мышечных волокон. С воз­растом резко увеличивается количество миофибрилл. К 7 го­дам по сравнению с новорожденными оно увеличивается в 15—20 раз. В период от 7 до 14 лет рост мышечной ткани происходит как за счет продолжающихся структурных преобра­зований мышечного волокна, так и в связи со значительным рос­том сухожилий. Рост поперечника мышечных волокон и внутри­мышечных соединительнотканных волокон продолжается до 20—25 лет и во многом зависит от уровня двигательной активно­сти и тренированности. Увеличение мышечной массы и структур­ные преобразования мышечных волокон, связанные с увеличением основного сократительного субстрата, приводят к увеличению с возрастом мышечной силы. Исследования показывают, что школьники 7—11 лет облада­ют еще сравнительно низкими показателями мышечной силы. Си­ловые и особенно статические упражнения вызывают у них быст­рое утомление. Дети этого возраста более приспособлены к крат­ковременным скоростно-силовым динамическим упражнениям.

Однако младших школьников следует постепенно приучать к сохранению статических поз. Особое значение статические упраж­нения имеют для выработки и сохранения правильной осанки.

Наиболее интенсивно мышечная сила увеличивается в подрост­ковом возрасте. У мальчиков прирост силы начинается в 13— 14 лет, у девочек раньше — с 10—12 лет, что связано с более ранним наступлением у девочек полового созревания. В 13—14 лет четко проявляются половые различия в мышечной силе, показатели относительной силы мышц девочек значительно уступают соответствующим показателям мальчиков. Поэтому в занятиях с девочками-подростками и девушками следует особенно строго дозировать интенсивность и тяжесть упражнений.

Вопрос 5. Гигиенические требования к оборудованию учебного процесса и организации труда учащихся. Знакомство детей и подростков с оборудованием для занятий по труду сле­дует сопровождать указаниями о правилах их безопасного ис­пользования.

Для выполнения картонажных работ следует использовать кар­тон толщиной не более 0,5 мм, легко поддающийся резанию по прямым и закругленным линиям; для лепки лучше использовать пластилин, как более податливый, чем глина. Освоение учащими­ся навыков пиления, строгания, долбления также лучше начинать на податливой древесине: сухих без сучков досках и брусках из мягких пород дерева (липа, сосна, ель).

Столярная мастерская оборудуется столярными верстаками и станками по обработке дерева (токарный, сверлильный и др.>. Устройство верстаков должно допускать приспособление их по высоте не менее чем для трех групп роста учащихся. Установлено, что для учащихся ростом до 127 см высота верстака должна быть 65,5 см, для учащихся ростом до 128—133 см — 70,5 см, а для учащихся ростом 134—141 см — 77,5 см.

Читайте также:  Функции дыхательных мышц осуществляют дыхательные движения

Слесарно-механические мастерские оборудуются многомест­ными верстаками и станками: токарно-винторезным, настолько-сверлильным, заточным и др. Высота слесарных верстаков до губок тисков в соответствии с тремя группами роста учащихся предусматривается 75, 80,5 и 88 см.

В случаях несоответствия высоты верстаков или станков росту учащихся используют специально сделанные подставки с изме­няющейся высотой.

Воспитание правильной осанки не ограничивается только при­учением учащихся сидеть правильно за партой. Правильное по­ложение тела должно сохраняться и при выполнении различных работ, в том числе в школьных мастерских.

Правильное положение тела в зависимости от характера вы­полняемой физической работы достигается: 1) прямым положени­ем корпуса и небольшим наклоном головы; 2) симметричным по­ложением тела, а в случаях необходимости асимметричного по­ложения — частым изменением этой позы; 3) одинаковой нагрузкой на правую и левую половину тела; 4) равномерным упражнением обеих половин тела; 5) устойчивым положением;

6) недопущением сдавливания органов грудной и брюшной полости;

7) отсутствием перенапряжения органов зрения.

Станки и верстаки размещают в мастерских с учетом педаго­гических требований и правил по технике безопасности. Мини­мальное расстояние между станками допускается 0,8 м, а между рядами станков 1,2 м. Движущиеся части станков во избежание травматизма учащихся закрывают защитными приспособлениями. Заточный станок должен иметь защитный экран. По задней стенке слесарных верстаков устанавливают металлическую сетку с мелкими ячейками. Высота сетки 0,75 к. Сетка предохраняет от ос­колков, отлетающих при обработке деталей.

В числе оборудования мастерских предусматривается аптечка с перевязочным материалом и медикаментами, необходимыми для оказания первой помощи при ожогах и ранениях (стерильные бинты, марля или индивидуальные пакеты, вата, йодная настой­ка, перманганат калия, перекись водорода, раствор бриллиантовой зелени).

Особое внимание должно быть уделено кабинетам, где произ­водится обучение учащихся машинописи. Используются специаль­ные столы (62, 66 и 69 см) соответственно росту учащихся (150— 159, 160—169, 170 см и выше). Длина крышки стола 90 см, шири­на 50 см. Ширина пространства для ног 40—45 см. Высота стуль­ев должна соответствовать высоте столов (41, 44 и 47 см).

Контрольные вопросы:

1. Назовите органы, относящиеся к пассивной части опорно-двигательного аппарата и к активной его части. На чем основано такое под­разделение?

2. Что вы знаете о химическом составе костей и их механических
свойствах?

3. Какие возрастные особенности строения и функций костей вы зна­ете?

4. Какие бывают виды соединений костей? Дайте им характеристики.

5. Назовите функции и свойства скелетных мышц.

6. Что вы знаете о классификации мышц, на чем она основана?

7. Какие виды работы мышц вы знаете? Приведите примеры.

8. Что называют силой мышцы, от чего зависит эта сила?

9. В результате чего появляется утомление мышц?

10. Какой вид отдыха лучше всего восстанавливает их работоспособность?

195.133.146.119 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Опорно-двигательная система относится к исполнительным системам органов. Она образована двумя составляющими:

  • костями скелета, обеспечивающими функции опоры для организма (создания каркаса) и защиты внутренних органов от механических повреждений;
  • и поперечно-полосатой мускулатурой, которая приводит в движении кости скелета и делает возможным перемещение человека в пространстве. Кроме того, мускулатура придаёт организму форму, защищает часть внутренних органов. Мимические мышцы изменяют выражение лица, что играет значительную роль в невербальном общении.

Также к опорно-двигательной системе относят структуры, обеспечивающие сочленение костей скелета и прикрепление к ним мышц.

По внешнему строению выделяют несколько видов костей:

Трубчатые кости состоят из двух головок (эпифизов) и тела (диафиза). Внутри тела трубчатых костей находится полость с костным мозгом. Красный костный мозг, он же «деятельный» – это стволовые клетки, из которых появляются новые элементы крови, иммунные клетки. Жёлтый, или «недеятельный» костный мозг представляет собой жировую ткань. Некоторые вредные для организма вещества, например, тяжелые металлы или лекарства, могут накапливаться в нем годами, вызывая хроническую интоксикацию. Различают длинные (плеча, предплечья, бедра и голени) и короткие (пястневые и плюсневые) трубчатые кости.

Плоские кости имеют плоскую форму. Это, например, лопатки, кости черепа, тазовые кости, ребра.

Короткие кости обычно имеют неправильную форму и небольшой размер. Они образуют скелет запястья, предплюсны.

Смешанные кости сочетают в себе элементы нескольких костей. Например, тело позвонка представлено короткой костью, а отростки и дуга – плоской.

Снаружи каждая кость покрыта тонкой живой тканью — надкостницей. Она обильно кровоснабжается, здесь находится много нервов и болевых рецепторов, что делает ушиб кости очень болезненным по сравнению с ушибом мышцы.

Ниже надкостницы расположено плотное (компактное) вещество кости, очень плотный твёрдый слой, образующий наружный каркас. Кнутри от него находится рыхлое губчатое вещество. Оно менее прочно, зато и весит гораздо меньше.

В месте соединения двух костей контактирующие поверхности покрыты хрящевыми пластинами. Хрящ упругий (то есть может незначительно сжиматься при увеличении нагрузки) и гладкий, благодаря чему кости не стираются от трения.

Костная ткань относится к соединительным тканям, для них характерно преобладание межклеточного вещества над клеточным элементом. Это хорошо видно на микроскопическом уровне.

Кость состоит из двух типов веществ: органического (около 30%, в основном белки и углеводы) и неорганического (около 60 %, в основном соли кальция и магния, фосфаты); оставшиеся 10% составляет вода. Неорганическая часть придает костям твердость, но при этом повышает их хрупкость. Если кость прокалить, в ней останутся только минеральные соли и она будет легко ломаться. Органическое вещество более эластичное, если кость обработать кислотой, минеральные вещества растворятся и останется только гибкий коллагеновый остов, который может сгибаться, не ломаясь.

У детей преобладает содержание органического вещества, поэтому кости у них более эластичные и упругие. С возрастом повышается доля минеральных веществ и кости становятся менее упругими, но более прочными. При старении происходит гормональная перестройка организма, снижается число костных балок в губчатом веществе, основное вещество теряет воду, а минеральные составляющие вымываются, кости становятся хрупкими и легко ломаются. Эти явления называются остеопорозом.

Строительные клетки, остеобласты, создают вокруг себя каркас из минеральных веществ, преимущественно кальция. Единица строения кости называется остеоном.

Остеобласты активны не только в период роста организма, они работают на протяжении всей жизни человека. Кости постоянно обновляются и перестраиваются. Для этого нужно не только создать новые элементы каркаса, но и уничтожить старые или поврежденные участки. Этим занимаются остеокласты – клетки, разрушающие костную ткань.

Совместная работа остеокластов и остеобластов обеспечивает сращение переломов и реакцию кости на изменение привычной нагрузки. Например, если человек перестает ходить на несколько месяцев, вертикальная нагрузка на кости ног, которую давал вес тела, значительно снижается. Костные балки компактного вещества при этом перестраиваются, приспосабливаясь к отсутствию прежних действующих сил. При попытке снова начать ходить кости могут сломаться, не выдержав вес тела. Подобное происходит с космонавтами после длительных полетов.

Кровеносные сосуды и нервы, проходящие в кости.

На рисунке можно видеть кровеносные сосуды и нервы, проходящие в кости. Цилиндрические структуры вокруг них – остеоны. Они образуются клетками кости (изображены в виде розовых овальных тел с отростками).

Скелет человека состоит из нескольких частей: осевого скелета, поясов конечностей и, собственно, свободных конечностей. Основу осевого скелета составляют позвоночник и череп.

Позвоночник делится на пять отелов:

  • шейный (7 позвонков);
  • грудной (12 позвонков, к каждому прикреплена пара ребер);
  • поясничный (5 позвонков);
  • крестцовый (5 позвонков, сросшихся в единую кость – крестец);
  • копчик (3-5 небольших сросшихся позвонков образуют одну кость. Это пример редуцированного хвоста).

Позвонки разных отделов имеют свои отличительные признаки. Общая закономерность такова, что размер тел позвонков увеличивается сверху вниз. Самые крупные свободные позвонки в поясничном отделе. Между телами позвонков находятся эластичные межпозвоночные диски, состоящие из хрящевой ткани. Дуги каждого позвонка образуют отверстие, в котором проходит спинной мозг.

Естественные изгибы позвоночника имеют свои названия – шейный и поясничный лордозы (изгибы вперед), грудной и крестцовый кифозы (изгибы назад). Боковой изгиб называется сколиозом, в норме его не должно быть. Изгибы необходимы для амортизации: позвоночник работает как пружина между ногами и головным мозгом, смягчая тряску и удары при ходьбе, беге. Без лордозов и кифозов прямохождение было бы невозможным.

Рёбра, прикрепленные к позвоночнику, образуют грудную клетку. Сзади она ограничена грудным отделом позвоночника и задними отрезками ребер, спереди – грудиной и реберными хрящами. Грудная клетка придает форму грудной полости и защищает такие важные органы как сердце, лёгкие, трахея, пищевод.

Цифрами обозначены: 1 – ребра; 2 – реберный хрящ истинных ребер; 3 – реберный хрящ ложных ребер; 4 – реберный угол; 5 – реберная дуга;

Двенадцать пар ребер можно разделить на три группы. Первая группа – «истинные» ребра, с 1-го по 7-е; они крепятся непосредственно к грудине с помощью хрящей, образуя полуподвижное сочленение. Ребра с 8-е по 10-е называют «ложными», так как их хрящи крепятся не к грудине, а к хрящам вышележащих ребер. 11 и 12 ребра называют «колеблющимися», их концы не закреплены и свободно лежат в толще мышц.

Череп человека образован парными и непарными костями, срастающимися в процессе взросления организма. Единственная подвижная кость черепа – нижняя челюсть. Различают мозговой и висцеральный (лицевой) отделы черепа.

Кости мозгового отдела достаточно массивные, они образуют черепную коробку, которая защищает головной мозг от повреждений. Сюда относят: лобную, парные теменные и височные, затылочную кость. Височные кости содержат в себе сложную систему каналов, где проходят крупные кровеносные сосуды, находятся органы слуха и равновесия. В затылочной кости находится большое затылочное отверстие, через которое сообщаются полости спинного мозга и головного.

Висцеральный скелет образует рельеф лица, глазницы, носовые ходы. Кости в нем небольшие, могут иметь тонкие стенки и полости внутри, что делает их легкими.

Конечности не крепятся непосредственно к осевому скелету, для этого служат пояса конечностей. Пояс верхних конечностей представлен лопаткой и ключицей. Благодаря наличию ключицы человек может разводить руки в стороны, в то время как некоторые животные (например, лошади, собаки) на такое движение не способны. Пояс нижних конечностей составляют три пары сросшихся костей таза: лобковые, подвздошные и седалищные кости.

Верхняя и нижняя конечности имеют схожее строение: по одной кости в бедре и плече, по две в голени и предплечье. Две кости в дистальных отделах конечностей позволяют совершать вращательные движения кистью и стопой.

Скелет ноги образован бедренной костью с шаровидной головкой, сочленяющейся с тазом, большой и малой берцовыми костями, костями предплюсны, плюсны и пальцев стопы.

Скелет руки схожим образом состоит из плечевой, лучевой и локтевой костей, костей запястья, пясти и пальцев кисти. Локтевая кость больше лучевой, имеет крупную головку, образующую локтевой сустав.

Каждый палец состоит из трех фаланг: дистальной, проксимальной и средней. Большой палец образован всего двумя фалангами, на кисти он расположен отдельно от остальных. Такое противопоставление большого пальца позволяет совершать хватательные движения, держать в руке предметы.

Есть несколько форм соединения костей. Подвижное соединение называется суставом. Чем свободнее сочленение в суставе, тем больше движений могут совершать кости друг относительно дуга и тем больше уязвимость такого соединения. В месте соединения костей их покрывает суставная сумка, которая защищает место соединения и вырабатывает суставную жидкость. Снаружи суставная сумка укреплена связками, которые предотвращают ее от разрывов и растяжений. Поверхности костей внутри суставной сумки покрыты хрящом. Гладкая поверхность хряща и наличие суставной жидкости не дают костям истираться при движении.

Другой вариант соединения –полуподвижное сочленение. Таким образом ребра соединены с грудиной, позвонки примыкают друг к другу. Полуподвижные сочленения более надежны, в них реже происходят растяжения связок или вывихи.

Третий тип соединения – костный шов, неподвижное сочленение. Так соединены кости черепа, таза.

Для того, чтобы привести в движение кости скелета, необходимы мышцы. Это уникальные органы тела, способные быстро изменять свою форму (сокращаться) под действием нервных импульсов двигательных нейронов. К опорно-двигательной системе относят поперечно-полосатые (скелетные) мышцы, их отличает произвольность сокращения (человек способен сознательно контролировать их сокращение и расслабление).

Скелетные мышцы крепятся к костям при помощи нерастяжимых сухожилий. Мышца лежит внутри сумки из соединительной ткани, фасции, и состоит из нескольких мышечных пучков. Каждый пучок также покрыт фасциальной оболочкой. Пучки состоят из мышечных волокон, каждое волокно состоит из клеток.

Каждая мышечная клетка образована слиянием нескольких, она имеет много ядер и огромное число митохондрий, которые необходимы для получения энергии. Внутри вдоль клетки тянутся пучки сократительных белков – миофибриллы.

Основные сократительные белки мышечной клетки – актин и миозин. Используя энергию АТФ, миозиновая головка скользит по цепочке актина, как будто вытягивает канат. Актин смещается и вместе с ним сжимается вся клетка. Чтобы запустить процесс сокращения, необходимы ионы кальция, для расслабления нужны ионы магния. Таким образом, нарушение электролитного состава крови может вызывать судороги.

Возле мембраны в мышечной клетке находятся резервуары с ионами кальция. При поступлении нервного импульса в мембране открываются кальциевые каналы, незначительное число ионов попадают в цитоплазму клетки. Небольшое повышение внутриклеточной концентрации кальция активирует каскады, в результате которых кальций высвобождается из внутриклеточных депо, его количество растет лавинообразно, клетка сокращается.

В мышцах есть особенный тип рецепторов – проприорецепторы. Они отвечают за контроль напряжения мышечных пучков. Человек с закрытыми глазами, не видя свои конечности, все равно знает, в каком положении они находятся. Это происходит оттого, что мозг анализирует информацию от проприорецепторов и «знает», какие именно мышцы в данный момент напряжены.

Ответ любой мышцы зависит от силы пришедшего импульса. Существует порог возбуждения, то есть минимальная сила импульса, начиная с которой мышца начинает сокращаться. При постепенном увеличении мышца достигает своего максимума силы сокращения, при котором задействованы все двигательные единицы.

Чувствительность мышц к возбуждению различна. Самые трудновозбудимые мышцы – бедренные, управляющие движением ноги. Самые чуткие – мышцы глаз, так как движения глазного яблока должны быть максимально точными.

Самую большую силу развивают жевательные мышцы, на коренных зубах человека они способны развить усилие до 72 кг. Икроножная мышца самая сильная на растяжение, она способна удержать вес около 130 кг.

Единственными скелетными мышцами, которые не крепятся к костям, являются мимические мышцы. Они необходимы для передачи эмоций и общения в социуме.

Для нормального движения необходима согласованная работа мышц. Есть несколько основных типов взаимодействия между мышцами: синергизм и антагонизм. Мышцы-синергисты совершают работу в одном направлении, мышцы-антагонисты – в разных, они совершают работу в противофазе (при сокращении одной мышцы вторая расслабляется и наоборот). Пример мышц-антагонистов: двуглавая (бицепс) и трехглавая (трицепс) мышцы плеча, первая сгибает руку в локтевом суставе, вторая разгибает.

источник